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Abstract 

 

A metabolic network is most often interpreted and modeled in terms of a collection of 

enzyme-catalyzed reactions with transport phenomena that utilise substrate metabolites to 

generate final metabolites. The complexity of the metabolic reaction systems necessitates 

the development of the integrated approaches to analyse and interpret the systemic 

properties of cellular metabolism, which shifts the emphasis from single metabolic 

reactions to systemic pathways defined by elementary flux mode (EFM) analysis. In this 

work a methodology is developed to establish a rational metabolic engineering strategy 

for the elucidation and optimisation of metabolic systems, by combining the metabolic 

flux analysis (MFA) and pathway identification with the thermodynamic analysis of the 

metabolic system. A bi-level optimisation strategy has been developed to predict the 

optimal pathways for the maximum productivity and the operating conditions / 

performance in the first and the second level respectively, for achieving the desired 

objectives. In the first level, a systematic enumeration of pathways is described by the 

elementary flux mode (EFM) analysis, which provides a mathematical tool to define and 

comprehensively describe all metabolic routes that are both stoichiometrically and 

thermodynamically feasible for a group of enzymes. The optimal metabolic flux 

distribution and the corresponding pathways are identified by LP optimisation subjecto to 

the stoichiometric flux balance analysis (FBA) and the constrains on negative gibbs free 

energy change, for achieving the maximum yield of products. In the second level, 

thermodynamic optimisation in terms of the Gibbs free energy change minimisation is 

carried out for the best performance of the system. The Gibbs free energy changes are 

predicted for the stoichiometrically balanced sequences of pathways from for the 
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energetic coupling between metabolites. The Gibbs free energy of metabolites in this 

model is presented as a function of temperature, pressure, pH and metal ions 

concentrations. Hence the minimisation of the Gibbs free energy change optimises these 

operating conditions, for the optimal pathways that achieve the desired objectives on 

productions. This two stage optimisation approach is integrated through the flux balance 

analysis, the elementary flux mode analysis, the inequality constraints on the negative 

Gibbs free energy change and the calculation of metabolites formation gibbs energy. The 

optimisation procedure thus generated ensures the maximisation of the external flux 

capacities and the minimisation of the Gibbs free energy change and hence derives the 

optimal pathways and the operating conditions for achieving the desired objectives. The 

methodology is demonstrated by a case study on the optimisation of pentose phosphate 

pathway (PPP) and the glycolysis cycle of the insilico Escherichia coli. The yield of 

amino acid is maximised, while the minimisation of the Gibbs free energy change during 

the process optimises the operating conditions required for the process. Thus the optimal 

flux distributions as well as the optimal conditions on the pH and ion concentrations are 

achieved. 

 

Keywords: metabolism optimisation, Gibbs free energy minimisation, thermodynamic 

analysis, pathway analysis, FBA 
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Introduction 

 

A metabolic network is most often interpreted and modeled in terms of a collection of 

enzyme-catalyzed reactions with transport phenomena that utilise substrate metabolites to 

generate final metabolites. Metabolic flux analysis (MFA) is most widely adopted for 

rational design and in silico engineering of metabolic system to calculate the 

nonmeasurable quantities from measurable quantities using a stoichiometric model with a 

given set of metabolic reactions and mass balances around the metabolites. Therefore, to 

compute the flux distribution in a metabolic system, flux balance analysis (FBA), based 

on linear programming (LP), has been firmly established theoretically (Varma and 

Palsson, 1994a). In general, FBA provides one desired physiological endpoint, e.g., the 

maximum growth rate, and its corresponding flux distribution under some culture 

conditions. The unknown fluxes within a metabolic reaction network are evaluated by LP, 

subject to constraints pertaining to mass conservation, thermodynamic properties, and 

capacity as described elsewhere (Edwards et al., 1999; Varma and Palsson, 1994a). The 

application of flux balance analysis has been effectively dealt with metabolic networks of 

various kinds (Edwards et al., 1999; Schilling et al., 1999) 

 

However, several critical issues remain unresolved, especially the uniqueness of flux 

distribution. The implementation of LP in FBA frequently leads to multiple (or alternate) 

optima depending on the initial starting point, thereby signifying the existence of multiple 

solutions. Hence, the complexity of the metabolic reaction systems necessitates the 

development of the integrated approaches to analyse and interpret the systemic properties 

of cellular metabolism, which shifts the emphasis from single metabolic reactions to 

systemic pathways. The theoretical foundation for identification of a unique set of 
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systemically independent biochemical pathways, termed extreme pathways, lies on the 

stochiometry and thermodynamic limitations of systems. All these pathways should be 

regarded as the true functional units of metabolic systems, which can also be used to 

represent any flux distribution achievable from flux balance analysis. These works 

propose a unified approach for identifying multiple flux distribution in metabolic flux 

analysis, through the combination of flux balance model based on LP and pathway 

analysis based on elementary flux modes analysis. Therefore, the application of pathway 

analysis, together with the FBA, plays a critical role in the improvement of metabolic 

flux analysis. 

 

Thermodynamic analysis can be used to decide whether a given microbial growth or 

metabolic reaction is feasible and find the optimal operating conditions for achieving the 

maximum productivity from bioprocesses. Based on such analysis, it ought to be possible 

to estimate the key parameters in biotechnological cultures and thus to address the 

operating viability of bioprocesses. Once the first measurement is carried out, 

thermodynamic analysis based predictions can be used as benchmarks, indicating the 

scope for improvement. All of these would be of invaluable help in bioprocess 

development (von Stockar, 2005). 

 

In thermodynamic terms, the difference in Gibbs free energy sets the driving force for 

any system undergoing changes. The Gibbs free energy change needs to be negative for 

any phenomena to be feasible. When a system is in equilibrium the Gibbs free energy 

change of the system is the minimum. Thus, any system will change towards a minimum 

Gibbs free energy change. In broad terms, thermodynamic analysis of a process involves 

the determination of the Gibbs free energy change, the enthalpy change and the entropy 
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change under specified conditions. The use of Gibbs free energy is appropriate under 

conditions if process occurs spontaneously (i.e. irreversibly). In this case the Gibbs free 

energy change is negative. This is the basis for assessing the thermodynamic feasibility of 

a process. There is also a universal law that a reaction in which the free energy change is 

large and negative has an equilibrium that favours the side of products. Thus, 

thermodynamic analysis based on the driving force for microbial growth in terms of 

Gibbs energy change can be put in practical use in evaluating the performance of 

microorganisms with respect to growth and bioproduct synthesis. 

 

In this work, a novel methodology is developed to establish an integrated metabolic 

engineering approach for the elucidation and optimisation of metabolic systems. Not only 

the performances of metabolic systems in terms of productivity are optimised by 

combined flux balance analysis and pathway analysis, but also the optimal operability is 

achieved by the introduction of thermodynamic otpimisation approach. To achieve this, a 

bi-level optimisation strategy is developed. Application of thermodynamic analysis based 

on Gibbs free energy change in optimisation approach is novel and based on heuristic, 

which turns thermodynamics into a useful tool in metabolic engineering. The 

methodology has been detailed in the first part of this paper. This includes the 

formulations and illustrations on Gibbs free energy change, the metabolic flux analysis 

and the algorithm for bi-level optimisation. In the second part, a case study on the 

metabolism network of pentose phosphate pathways (PPP) and glycolysis cycle of in 

silico Escherichia coli has been established to demonstrate the profound efficacy of this 

methodology.  
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Problem statement 

 

For a given metabolic system, the objective of this work is to evaluate and optimise its 

performance and metabolic flux distribution in terms of the yields of desired products and 

the rational operating conditions that facilitate achieving the maximum yields of desired 

products. We propose an optimisation based methodology that includes the maximum 

productivity of a metabolic network, the optimal flux distribution attaining the maximum 

productivity, and the optimal operating conditions for the system (Fig. 1). The results 

achieved should be thermodynamically and stoichiometrically feasible for metabolic 

systems, and practically realisable and rational for industrial applications. The 

methodology has been illustrated by the demonstration of a practical example. 

 

 

Productivity 
Metabolic flux distribution 

Operating conditions 

Maximum productivity 
Optimal metabolic flux distribution 

Optimal operating conditions 

Optimisation of 
metabolic systems 

 

Fig. 1  Problem statement 

 

Methods 

 

1. Gibbs free energy change for biochemical reaction system 

 

There are two kinds of reaction equations, chemical equations which are written in terms 

of species and balance elements and charge, and biochemical equations written in terms 

of biochemical reactants at a specified pH that are bounded by species in equilibrium.  
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However, biochemical equations do not balance elements that are assumed fixed, such as 

hydrogen at a constant pH. The conventional thermodynamic analysis thus can not 

provide the criteria for spontaneity or equilibrium. Therefore, it is necessary to define 

new transformed thermodynamic properties for biochemical equations (Alberty, 1994). 

These new thermodynamic properties of biochemical reactants, especially Gibbs free 

energy changes, can be calculated directly from the standard thermodynamic properties 

of their corresponding species as a function of pH and ionic strength I (Alberty, 1994).  

 

2.  Metabolic system analysis 

 

The metabolic system model can be described by flux balance analysis. The tool of 

pathway analysis is used for identifying all the elementary path modes included in a 

system. A combination between them is introduced for the development of integrative 

methods to analyse and interpret metabolism networks (Fig. 2).  

 
 Flux Balance Analysis Pathway Analysis 

Combination
 

 
Fig. 2  Metabolic system analysis 

 
2.1  Flux balance analysis 

 

A metabolic network is a collection of enzyme-catalysed reactions and transport 

processes that serve to dissipate substrate metabolites and generate final metabolites 

(Schilling, 2000). Flux balance analysis can be used to describe metabolic system models 

that include a complete list of reactions as well as metabolites and cofactors, in a 
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quantitative manner. Metabolites are classified as internal or external according to 

whether or not they are to fulfill the pseudo-steady state condition. In other words, the 

total production rate of each internal metabolite equals to its consumption rate, while 

external metabolites (which are alternatively called pool metabolites, or sources and sinks) 

do not satisfy this condition. The number of mass balance is the same as the number of 

internal metabolites. For the flux balance analysis of metabolic systems, the only 

information required is the stoichiometry of metabolic reactions, the mass balance around 

the internal metabolites under pseudo-steady state and the external metabolite sources 

uptake. The process of flux balance analysis is illustrated in Fig. 3.    
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LP optimisation
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Fig. 3  Flux balance analysis 

 

2.2  Pathway analysis 

 

A unique set of systemically independent biochemical pathways, termed extreme 

pathways, based on the stochiometric and thermodynamic feasibilities of metabolic 

systems for a group of enzymes is identified. As a true functional unit of metabolic 
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systems, each pathway represents a full set of nondecomposable steady-state flows that a 

network can support. The enumeration of all feasible pathways within a metabolic system 

can be accomplished using the elementary flux mode (EFM) analysis algorithm (Schuster 

2000), implemented in MATLAB Version 6.5 (Mathworks Inc., Natick, MA).  

 

2.3  Combination between pathway analysis and flux balance analysis 

 

The complexity in metabolic systems necessitates the development of the integrated 

approaches to analyse and interpret the systemic properties of cellular metabolism, which 

emphasises not only on single metabolic reactions, but also the systemic pathways 

defined by the elementary flux mode analysis. Therefore, we derived a combination of 

pathway analysis and metabolic flux analysis based on the relationship between reaction 

flux distribution V and pathway flux distribution B .                                          

 

3.  Bi-level optimisation  

 

A bi-level optimisation approach is developed, which combines the metabolic flux 

analysis and pathway identification with the thermodynamic analysis of metabolic 

systems (Fig. 4). In Module 1, the objective of productivity of external metabolites is 

maximised by linear programming, which is subjected to mass balance equations derived 

from pathway and flux analysis and the negative Gibbs free energy change inequalities 

for feasibility of pathways. In Module 2, thermodynamic optimisation in terms of the 

minimisation of the total Gibbs free energy change of a metabolic system is carried out to 

predict the optimal operating conditions for the system. The objective function of 

thermodynamic optimisation is expressed by means of pathway Gibbs free energy change 
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as well as the optimal pathway flux distribution derived from Module 1.  

 

 

Maximum 
Productivity 

Optimal operating 
condition 

Module 2 

Optimal pathway flux distribution 

Module 1 

Productivity Maximization 

Gibbs free energy minimization 
 

 
Fig. 4  Modules of Bi-level Optimisation Approach 

 

Case Study 

 

A case study on the synthesis of pentose phosphate pathways (PPP) and glycolysis cycle 

of in silico model of Escherichia coli metabolism has been constructed to illustrate the 

proposed bi-level optimisation approach.  

 

1.  The representation of the metabolic network 

 

The metabolism network under consideration is embedded with the glycolytic pathway 

and the pentose phosphate pathway in the in silico model of E. coli metabolism. This 

network incorporates 26 metabolites (4 external metabolites, 15 internal metabolites, 7 

cofactors) and 19 metabolic reactions. (Tables 1-2). The overview of the reaction scheme 

for the model is indicated in Fig.5. 
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Table 1.  Metabolic reactions of glycolysis circle and PPP circle in E.coli model 
 

Enzyme Gene Rxn no. Reaction 

Glycolysis(10) 

Phosphoglucose isomerase pgi 1 PFPG 66 ↔  

Phosphafructokinase pfkA 2 FDPADPATPPF +→+6  

Fructose-1,6-bisphosphatase fbp 3 PIPFFDP +→ 6  

Fructose-1,6-bisphophate aldolase fba 4 2313 PTPTFDP +↔  

Triosphosphate isomerase tpiA 5 2313 PTPT ↔  

Glyceraldehyde-3-phosphate dehydrogenase gapA 6 PDGNADHNADPIPT 1313 +→++  

Phosphoglycerate kinase pgk 7 PGATPADPPDG 313 +→+  

Phosphoglycerate mutes gpmA 8 PGPG 23 ↔  

Enolase eno 9 PEPPG ↔2  

Pyruvate kinase pyk 10 PYRATPADPPEP +→+  

Pentose phosphate pathway (PPP)(9) 

Glucose-6-phosphate dehydrogenase zwf 11 PGLDNADPHNADPPG 66 +→+  

6-Phophogluconolactonse pgl 12 PGCDPGLD 66 ↔  

6-Phosphogluconate dehydrogenase gnd 13 PRLCONADPHNADPPGCD 56 2 ++→+
Ribose-5-phosphate isomerase rpiA 14 PRPRL 55 ↔  

Ribulose phosphate 3-epimerase rpe 15 PXPRL 55 ↔  

Transketolase 1 tktI 16 PSPTPRPX 71355 +↔+  

Transaldolase tal 17 PFPEPSPT 64713 +↔+  

Transketolase 2 TktII 18 13645 PTPFPEPX +↔+  

5-Phosphoribosyl-1-pyrophosphate synthetase Prs 19 PexRPR 55 →  

 

 

Among the external metabolites, glucose-6-phosphate is considered as the source because 

it is formed from glucose taken up into the cell. This is regarded as the only carbon 

source consumed through the system while producing metabolic products. Other external 

metabolites include carbon dioxide, Ribose 5-phosphate, and pyruvate, while pyruvate is 

assumed as the objective sink for the productivity maximisation.  
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Fig. 5  Overview of the metabolic network of Glycolysis Circle and PPP circle in E.coli model 

 

Table 2.  Metabolites of glycolysis circle and PPP circle in E.coli model 
Abbreviation Compound 

External metabolites(4) 
PG6  Glucose 6-phosphate 

PYR Pyruvate 

2CO  Carbon dioxide 

PexR5  Ribose 5-phosphate (external) 

Internal metabolites(15)  

PF6  Fructose 6-phosphate 

FDP  Fructose 1,6-diphosphate 

13PT  Glyceraldehyde-3-phosphate 

23PT  Dihydroxyacetone phosphate 

PDG13  1,3-P-d glycerate 

PG3  3-P-d glycerate 

PG2  2-P-d glycerate 

PEP  Phosphoenolpyruvate 

PGLD6  d-6-Phosphogluconate 

PGCD6  d-6-Phosphoglucono-δ -lactone 
PRL5  d-Ribulose 5-phosphate 

PR5  Ribose 5-phosphate 

PX 5  Xylulose-5-phosphate 

PS7  d-Sedoheptulose-7-P 

PE4  Erythrose 4-phosphate 

Cofactors(7)  

ATP  Adenosine triphosphate 

ADP  Adenosine diphosphate 

NAD  
NADH  Nicotinamide adenine dinucleotide 

NADP  
NADPH  Nicotinamide adenine dinucleotide phosphate 

PI  Phosphate 
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1.1.  Pathway and metabolic analysis of the metabolism network 

 

Formulation of the pathway analysis in a network has been described previously 

(Scheuster, 2000).  In this research, a set of metabolic pathway modes has been 

constructed by using elementary mode analysis, in order to systematically organise and 

analyse the metabolic network. Thirteen elementary path modes are derived from 

computation (Table 3). Fig.6 describes the pathway mode 3 for example to illustrate the 

reactions involved in this pathway. 

 

 
 Fig. 6  Graphical representation of the pathway mode 3 pertaining to the reaction scheme 
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Table 3.  Elementary path modes of the combined glycolysis and PPP system 
Mode Overall equation Steps 

1 PyrNADHATP
NADPiADPPG

223
2236

++
→+++

 pgi, pfkA, fba, tpiA, 2gapA, 2pgk, 2gpmA, 2eno, 
2pyk 

2 PyrCONADHPNADHATP
NADPNADPiADPPG

++++
→++++

2362
626

 -2pgi, gapA, 3zwf, 3pgl, 3gnd, rpiA, 2rpe, tktI, tal, 
tktII, pgk, gpmA, eno, pyk, 

3 PyrCONADHPNADHATP
NADPNADPiADPPG

53658
655863

2 ++++
→++++

 2pfkA, 2fba, 2tpiA, 5gapA, 3zwf, 3pgl, 3gnd, rpiA, 
2rpe, tktI, tal, tktII, 5pgk, 5gpmA, 5eno, pyk  

4 PexRCONADPHNADPPG 5226 2 ++→+  zwf, pgl, gnd, rpiA, Prs 

5 PexRADPATPPG 5665 +→+  5pgi, pfkA, fba, tpiA, 4rpiA, -4rpe, -2tktI, -2tal, 
-2tktII, 6Prs 

6 2612126 COPiNADPHNADPPG ++→+  -5pgi, -fba, -tpiA, 6zwf, 6pgl, 6gnd, 2rpiA, 4rpe, 
2tktI, 2tal, 2tktII, fbp 

7 PiADPATP +→  pfk, fbp 

8 PyrPGNADHATP
PexRNADPiADP
+++

→+++
622

532  -2pgi, gapA, -2rpiA, 2rpe, tktI, tal, tktII, pgk, gpmA, 
eno, pyk, -3Prs 

9 PyrNADHPNADHATPCO
PexRNADPNADPiADP

++++
→++++

422
542

2

 -2pgi, gapA, 2zwf, 2pgl, 2gnd, 2rpe, tktI, tal, tktII, 
pgk, gpmA, eno, pyk, -Prs 

10 PyrNADHATP
PexRNADPiADP

558
53558

++
→+++  2pfkA, 2fba, 2tpiA, 5gapA, -2rpiA, 2rpe, tktI, tal, 

tktII, 5pgk, 5gpmA, 5eno, 5pyk, -3Prs 

11 PyrNADHPNADHATPCO
PexRPGNADPNADPiADP

54582
5624558

2 ++++
→+++++  2pfkA, 2fba, 2tpiA, 5gapA, 2zwf, 2pgl, 2gnd, 2rpe, 

tktI, tal, tktII, 5pgk, 5gpmA, 5eno, 5pyk, -Prs 

12 PiPGPexR +→ 6556  -5pgi, fbp, -fba, -tpiA, -4rpiA, 4rpe, 2tktI, 2tal, 
2tktII,-6 Prs 

13 PiPGNADPHCOPexRNADP +++→+ 684528 2  -5pgi, fbp, -fba, -tpiA, 4zwf, 4pgl, 4gnd, 4rpe, 2tktI, 
2tal, 2tktII, -Prs 

 

Based on the results of pathway analysis, a 1319×  stoichiometric matrix A  is derived 

from the stoichiometry of reactions in each pathway and a 1113×  stoichiometric matrix 

U  is derived from the stoichiometry of external metabolites and cofactors in each 

pathway.  

 

1.2  Thermodynamic properties of the external metabolites and cofactors 

 

All the biochemical species of the external metabolites and cofactors involved in the 

network (Fig. 5) as well as their corresponding thermodynamic properties of the standard 

formation Gibbs free energy at 25 ℃, 1 bar and I=0, are illustrated in Table 4.  
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Table 4. Standard formation Gibbs free energy, charges and hydrogen atom numbers for species 
 

Species 
1/ −⋅Δ molkJG o

f charge iz  hydrogen atom numbers )(HNi  
−26PG  -1763.94 2 11 

−PYR  -472.27 1 3 
−25PR  -1605.34 2 9 
−NAD  0 1 26 

−2NADH 22.65 2 26 
−3NADP  0 3 25 

−4NADPH  25.99 4 25 
−2

4HPO  -1095.1 2 1 
−

42 POH  -1137.3 1 2 
−4ATP  -2573.49 4 12 

−3HATP  -2616.87 3 13 
−2

2 ATPH  -2643.58 2 14 
−3ADP  -1711.55 3 12 

−2HADP  -1752.53 2 13 
−ADPH 2  -1777.42 1 14 

 
 
Firstly, the standard formation Gibbs free energy of these species, at a specific pH and 

ionic strength ( 5=pH , 2.0=I ) is calculated from Eq.3 and 8 respectively, based on their 

hydrogen atom numbers )( +HNi  and the charge iz  (Table 4). Next, the standard 

formation Gibbs free energy for all the external metabolites and cofactors within the 

system, like ATP, ADP and inorganic phosphate, are calculated and shown in Table 5. 

 

Table 5  Standard formation Gibbs free energy for external metabolites and cofactors 
 

External metabolites and cofactors
1/ −⋅′Δ molkJG o

f  

PG6  -1442.52 
PYR -385.163 

PexR5  -1342.5 
NAD  760.7564 
NADH  783.4064 
NADP  731.4673 
NADPH  757.4573 
PI  -540.628 
ATP -1087.29 
ADP -711.984 
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2.  Productivity maximisation 

 

For the productivity maximisation, the objective function is to maximise the product flux 

of pyruvate using the flux balance analysis (FBA). The uptake rate of 

glucose-6-phosphateis is specified to be 10 gDCWhmmol / . The optimal flux distribution of 

pathways is shown in Table 6. The total Gibbs free energy change for this process at this 

operating conditions ( 5=pH , 2.0=I ) is -1321 1−⋅ molkJ . 

 

Table 6  Optimal flux distribution for pathways 
 

Mode Metabolic Flux B(p)

1 0 

2 10 

3 0 

4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
11 0 
12 0 
13 0 

 
 
3.  Gibbs free energy minimisation 

 

To predict the optimal conditions for operation, the optimal flux distribution achieved by 

the productivity maximisation is used as the input for thermodynamic evaluation. The 

standard formation Gibbs free energy of the external metabolites and cofactors within the 

system as functions of pH, ionic strength I and the standard formation Gibbs free energy 

of their corresponding species are predicted. The expression of the standard pathway 

Gibbs free energy change for the 13 pathway modes are derived from the stoichiometry 
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of the overall reaction equations of pathways. The NLP optimisation program is run 

under the GAMS modeling environment. The objective function is the minimisation of 

the total Gibbs free energy for all the pathways included. The result of the Gibbs free 

energy minimisation is presented in Table 7. The optimal operating conditions obtained 

are 7=pH and 3.0=I . The minimum Gibbs free energy change for this metabolic network 

is -5577.197 1−⋅ molkJ , which is significantly minimised compared to the initial value 

(-1321 1−⋅ molkJ ).  

 

Table 7.  Standard formation Gibbs free energy at optimal condition 
 

External metabolites and cofactors
1/ −⋅′Δ molkJG opt

f  

PG6  -1318.634 
PYR -350.745 

PexR5  -1241.617 
NAD  1059.736 
NADH  1079.833 
NADP  1012.137 
NADPH  1032.171 
PI  -1228.872 
ATP -2361.616 

ADP -1493.225 
1/ −⋅Δ molkJGopt

tot  -5577.197 

 

 

Conclusion 

 

A novel bi-level optimisation methodology has been presented for the productivity and 

thermodynamic performance of metabolic systems. The theoretical connection between 

flux balance analysis and pathway analysis is well established. Their combined 

application has been integrated with the thermodynamic constrains for metabolic flux 

analysis in order to predict the maximum productivity of the desired products. The 

corresponding optimal metabolic flux distribution is achieved. Moreover, thermodynamic 
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optimisation in terms of the Gibbs free minimisation has been successfully developed for 

metabolic systems, from which, the best operation conditions for the optimal flux 

distribution are predicted. This work proposed a rational approach for predicting and 

optimising the performance of metabolic systems. The heuristic idea of introducing 

thermodynamic analysis into metabolic engineering presents a new way to rationalise 

metabolic pathway analysis, hence, providing a better control mechanisms for metabolic 

systems and to find the best operating conditions for industrial bioprocesses. 
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