# Novel Microfluidic Valving and Packaging Designs for Protein Containing Biochips

Chunmeng Lu and L. James Lee Department of Chemical and Biomolecular Engineering The Ohio State University

## Lab-on-a-Chip







O.R.C.A microFluids (Micronics, Inc.)



NanoChip<sup>TM</sup> (Nanogen, Inc.)

LabCard<sup>TM</sup> (ACLARA BioSciences, Inc.)

Microtiterplate Lilliput (STEAG microParts GmbH)



LabChip<sup>®</sup> (Caliper, Inc.)

- •Point of care -- fast response
- •Small amount of sample  $< \mu l$
- •Parallel detection
- •Information storage

### Lab-on-a-Chip



## ELISA

- Enzyme-linked Immuno-Sorbent Assay
  - Bioassays in life sciences research
  - Food Safety detection of foodborne pathogens and toxins
  - Biodiagnostics detection of cancer and immuno diseases
  - Environmental pollutants
  - National security detection of bio- and chemi-warfare agents

**\$5-10B/yr. ELISA** market for cancer, HIV, food and water detection!

## **Schematic of ELISA**



## **Conventional 96-well ELISA**



- Time consuming (hours to 2~3 days) Immunoreaction is diffusion controlled Long incubation time (several hours)
- Relatively large reagent consumption (several hundred µl)
- Labor intensive
- Inconsistent results



## **CD** Microfluidic Platform System



## **Pumping and Valving**

### **Driving Force**

☆ Centrifugal force

### **Capillary Valve**



## **Pumping and Valving - Flow Sequencing**



#### **Chamber index:**

1- Calibration 1; 2- Wash 1; 3- Calibration 2;4- Wash 2; 5- Sample

## M. J. Madou, L.J. Lee, S. Daunert, K. W. Koelling, S. Lai, C-H Shih, *Biomedical Microdevices*, 2001

#### Flow Sequencing



#### **Displacement in Optode**



## **CD-ELISA Chip Design**



### Issues

- Design: dimension control; aspect ratio; multiple depth; many reservoirs
- Protein blocking: Valving
- Protein preloading: Bonding

## **CD** Manufacturing



## **Design Issues**

layer

- Higher aspect ratio desirable
- Multiple depth is needed • for a larger design window for 9-reservoir CD and bubble free sample loading
- Mold fabrication is more • difficult
- Mold release





## Issues

- Flow sequence: dimension; aspect ratio; multiple depth, more reservoirs
- Protein blocking: Valving
- Protein preloading: Bonding

## **Protein Issues in Capillary Valving**

- Surface property changes after protein blocking
- The valving capacity
  lost or reduced





w/o protein blocking



with protein blocking

## **Principle of Super-hydrophobicity**

□Wensel's theory

$$\cos\theta = r(\gamma_{sv} - \gamma_{sl}) / \gamma_{lv} \quad (1)$$



## Plasma Treated and Surface Microstructured PMMA

Typical PMMA  $\theta \sim 73^{\circ}$ 



□Fluorine plasma (CHF3) treated PMMA surface  $\theta \sim 108^{\circ}$ 

□Fluorine plasma treated micro-patterned PMMA surface  $\theta > 160^{\circ}$ , f=0.1







## Effect of Protein Blocking on Contact Angle



## Fishbone Design Based on Superhydrophobicity



Fishbone design

Advantages:

**Protein solution** 

 Protein-proof with superhydrophobic property

•Easy fabrication (embossing or injection molding)

•Easy alignment of bonding



## Blocking Process Simulation (Flow-3D<sup>®</sup>) and Visualization









#### Hydrophilic

PMMA surface w/o plasma treatment









Hydrophobic surface with plasma treatment









## calculated burst frequency



Top and bottom view

# Holding pressure test



## Experimental vs. theoretical Burst frequency

- Single channel -Syringe injection plus vacuum removal
- CD device -Centrifugal force
- Why discrepant?
  - -bonding defect-local defect-loading defect

| Parameter                    | Valve 1             | Valve 2                | Valve3                 | Valve4                 | Valve5              |
|------------------------------|---------------------|------------------------|------------------------|------------------------|---------------------|
| Protein<br>Treatment<br>Type | 0.1 wt%<br>BSA soak | 0.1 wt%<br>BSA<br>soak | 0.1 wt%<br>BSA<br>soak | 0.1 wt%<br>BSA<br>soak | 0.1 wt% BSA<br>soak |
| R1 (mm)                      | 23.3                | 21.6                   | 32.5                   | 39.0                   | 25.5                |
| R2 (mm)                      | 27.0                | 27.2                   | 39.0                   | 44.5                   | 31.1                |
| R_delta                      | 3.7                 | 5.6                    | 6.5                    | 5.5                    | 5.6                 |
| Width                        | 200                 | 200                    | 200                    | 200                    | 200                 |
| Depth(mm)                    | 100                 | 100                    | 100                    | 100                    | 100                 |
| (mN/m)                       | 72.9                | 72.9                   | 72.9                   | 72.9                   | 72.9                |
| Density                      | 1.0                 | 1.0                    | 1.0                    | 1.0                    | 1.0                 |
| Burst Freq.                  | 768                 | 634                    | 486                    | 489                    | 589                 |
| Exp. Burst<br>Freq           | 761                 | 705                    | 478                    | 541                    | 573                 |
| Match?                       | YES                 | NO                     | YES                    | NO                     | YES                 |

## Issues

- Flow sequence: dimension; aspect ratio; multiple depth; more reservoirs
- Protein issues: Valving
- Protein preloading: Bonding

## **Platform Bonding Methods**

### **Silicon/Glass/Metal Materials:**

- Anodic bonding
- Fusion bonding
- Eutectic bonding
- Adhesive bonding
- Well developed in IC industry
  Usually high temperature, high voltage, or high pressure
- **X** most not applicable to polymers

### **Polymeric Materials:**

- Welding (hot plate, laser, ultrasound)
- Lamination ( adhesive tape, film thermal bonding)
- Chemical (solvent) bonding
- ✓ Well developed in polymer industry
- Applicable mainly to relatively large features (several hundred microns)

#### Typical dimensions in BioNEMS/MEMS applications: 10 nm $\sim$ 100 $\mu m$

## Surface $T_g$ of PS under CO<sub>2</sub>



Y. Yang, L.J. Lee

## **CO<sub>2</sub> Bonding Experimental Setup**



CO2 bonding (200psi, 75psi, 1 hour)

# CO<sub>2</sub> Bonding and Testing Results





CO2 bonding (200psi, 75psi, 1 hour, PLGA interlayer)

Thermal lamination: 140°C, 10sec

## Collaboration with Ritek and Tecan

# **BioLOC/OSU**

- Microfluidics design
- Surface modification
- Reagent loading
- Packaging

RITEK

CD manufacturing

## Tecan

- Reader (detection/equipment)
- Software development