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Abstract—This work develops a numerical algorithm for the calculation of an optimal nonlinear state feedback law for 
nonlinear systems. A quadratic performance index is used which contains quadratic error terms, and quadratic input penalty 
terms. The optimization problem is solved using the Hamilton-Jacobi equations, which determine the optimal nonlinear state 
feedback law. A Newton-Kantorovich iteration is developed for the solution of the pertinent Hamilton-Jacobi equations, which 
involves solving a Zubov partial differential equation, at each step of the iteration, using a power series method. At step N of the 
iteration, the method generates the (N+1)-th order truncation of the Taylor series expansion of the optimal state feedback 
function. The method is also applied to the problem of ISE-optimal nonminimum-phase compensation for nonlinear systems. 
Finally, the results are applied to the problem of controlling a nonisothermal continuous stirred tank reactor with van de Vusse 
kinetics.  
 
 

I. INTRODUCTION 
HE Hamilton-Jacobi equation plays a central role in the theory of optimal control [7].  In the pioneer work of 
Al’Brekht [1] and Lukes [8], the Hamilton-Jacobi equation has been studied as the means for generating a state 
feedback law, which is optimal with respect to a quadratic performance index over an infinite time horizon.  A power 

series solution approach has been formulated to generate the positive-definite solution to the Hamilton-Jacobi PDE, which 
could potentially be used to compute the optimal state feedback law. A variant of the Hamilton-Jacobi equation arises in 
nonlinear H∞  control [10] and has been studied in a similar spirit.  

There have been some engineering applications of optimal state feedback designed through the Hamilton-Jacobi 
equation, the most notable one being the work of Garrard and Jordan [3] in aircraft control.  The key difficulty that 
prevented the widespread use of the Hamilton-Jacobi equation as a design tool has been the enormous computational effort 
and complexity in implementing Lukes’ method.  However, with the explosive increase in computing power in recent 
years, along with the availability of user-friendly and powerful symbolic computation software such as MAPLE, it is now 
becoming realistic to use the Hamilton-Jacobi equation as a design tool for nonlinear control applications. 

The purpose of this paper is to explore the use of the Hamilton-Jacobi equation as a design tool in control problems 
where performance can be adequately measured via a quadratic performance index over an infinite time horizon.  In order 
to reduce computational effort and complexity in the numerical calculations, the proposed methodology involves the 
application of the Newton-Kantorovich iteration to the pertinent nonlinear equations. The Newton-Kantorovich iteration as 
a method for solving Hamilton-Jacobi equations was first proposed and studied in a recent paper of the authors [9], for the 
special case of nonlinear systems that are affine in the input. The purpose of the present paper is to extend the method and 
results of [9] for the general case of nonlinear systems with non-affine dependence on the input. In addition, the method 
and results will be applied to the problem of ISE-optimal nonminimum-phase compensation for nonlinear systems. 

Section II will give the problem definition and a brief review of the Hamilton-Jacobi equations for the problem under 
consideration. Section III will develop the Newton-Kantorovich iteration algorithm. Section IV will formulate the 
Hamilton-Jacobi equations for the calculation of the ISE-optimal synthetic output for nonminimum-phase nonlinear 
systems in normal form, and develop a Newton-Kantorovich iteration algorithm for their solution. In Section V, the results 
of the previous sections will be applied, tested and evaluated for a problem of regulating concentration in a nonisothermal 
CSTR with van de Vusse kinetics. 
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II. BACKGROUND 
Consider a nonlinear system of the form: 
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where nx ∈\  is the state vector, mu ∈\  is the manipulated input vector, my ∈\  is the output vector, : n nF →\ \ , and 

: n mh →\ \  are analytic functions. Without loss of generality, it can be assumed that the origin 0 0=x  is an equilibrium 
point for system (1) corresponding to 0 0=u . 

Let’s consider now the following quadratic performance index: 
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where 1 2 … mh ( x ), h ( x ), , h ( x )  are the components of the output map ( )h x  and 1 2, , , mu u u…  are the components of the 
input vector u , or equivalently 
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where { }1 2diag , , , mQ q q q= … and { }1 2diag , , , mR r r r= … . The performance index contains quadratic error terms for 
output regulation with weight coefficients iq , and quadratic input penalty terms with weight coefficients ir . 

The optimal control problem involves the minimization of the performance index (3) subject to the dynamics (1). The 
Hamiltonian function associated with this problem is [2]: 
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where nλ∈\  is the vector of multipliers, and the corresponding Hamilton – Jacobi equation is [7]: 
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Consequently, the functions ( )V x  and ( )∗u x  must satisfy the equations:  
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and 
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The optimal feedback law ( )∗=u u x  is computed by solving the above equations with respect to ( )V x , and ( )∗u x .  

Assuming that the system (1) is linearly controllable: 
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and linearly observable: 
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 (7) and (8) admit a unique locally positive definite solution ( )V x , which is locally analytic around the origin [8]. 
 

III. NEWTON- KANTOROVICH ITERATION AND ITS APPLICATION TO THE HAMILTON-JACOBI EQUATION 
The Newton-Kantorovich iteration [4] is a generalization of the Newton-Raphson iteration, which is commonly used for 

the numerical solution of nonlinear algebraic equations, to general nonlinear operator equations ( ) 0=υN , where the 
operator N  maps a Banach space to another. At the N-th step of the Newton-Kantorovich iteration, the following linear 
operator equation is solved for 1+Nυ : 
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where Nυ  is the result of the (N–1)-th step and ( )′ ⋅υ δυN  is the Fréchet differential of the operator N . 
 

The nonlinear operator of the Hamilton-Jacobi equations (7) and (8), is: 
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and its Fréchet differential is:    
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Therefore, the Newton – Kantorovich Iteration involves solving the following linear equations, at each step of the iteration: 
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Equation (12) is a linear algebraic equation in ( )1N Nu u∗ ∗

+ −  which is readily solvable, as long as 
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 is an invertible matrix. Substituting the result to (11), equations (11) and (12) can be 

written equivalently as 
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Notice that (13) is a Zubov equation of the form 
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The Zubov equation (15) is a singular partial differential equation for which a recursive power series solution algorithm 

is applicable [5]. Once the Zubov equation is solved for 1( )+NV x , the function 1( )∗
+Nu x  can be immediately obtained from 

(14). 
When the Hamilton-Jacobi equations of the previous section are applied to the linear approximation of system (1), the 

leading terms of the Taylor series expansion of ( )V x , and ( )∗u x   (quadratic and linear terms, respectively) are obtained: 
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where P  is the positive definite  solution of the algebraic Riccati equation: 
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The above approximations for ( )V x , and ( )∗u x  are convenient initial conditions for the Newton – Kantorovich iteration 
of (13) and (14). In this way, the algorithm starts with the exact quadratic terms of ( )V x  and the exact linear terms 

in ( )u x∗ , the task being to iteratively determine the coefficients of the higher-order terms. Moreover, it is meaningful to 
progressively increase the truncation order for the approximate solution of the Zubov equation from iteration to iteration, 
i.e calculate 2 ( )V x up to third order, 3 ( )V x up to fourth order,  …  , 1( )NV x+  up to order (N+2), and the corresponding 

1( )Nu x∗
+  up to order (N+1). This truncation pattern was found to be most effective from a computational point of view and 

was followed in the numerical calculations of the Example section.   
 

IV. ISE-OPTIMAL NONMINIMUM-PHASE COMPENSATION 
Consider a SISO nonlinear system, with input u and output y , and a normal-form description of its dynamics 
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 where r  is the relative order of the system. Assume that the system is nonminimum-phase i.e its zero dynamics 
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where υ  a reference value for the output, is unstable. Also, consider the problem of optimal regulation of the output y  to 
a constant set point value υ , in the sense of minimizing the Integral of the Square of the Error (ISE): 
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Minimisation of the performance index (21) is to be performed subject to the dynamics (19) and closed-loop stability. This 
is a singular optimal control problem, since, as can be easily verified, its Hamiltonian function is linear in the input u [2]. 
However, minimization of (21) subject to the first ( )n r−  equations of (19) and closed-loop stability is a regular optimal 
control problem: 
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When the solution to the optimal control problem (22) is expressed in the form of state feedback law 
 

 ( ; )y y∗= ζ υ                                         (23) 
 

this represents exactly the singular surface for the original singular optimal control problem. Note that, by construction, the 
function y∗  will be such that the dynamics ( )0 , ( ; )F y∗=�ζ ζ ζ υ  is stable and ( ; )sy∗ =ζ υ υ .   

Moreover, solving (23) with respect to υ , 
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this defines an auxiliary output map 
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that possesses the following properties: 
 
i) ( , )sh ζ υ υ′ = , which implies that y′  is statically equivalent to y . 

ii) the zero dynamics of system (19) with output (25) is ( )*
0 , ( ; )F y=�ζ ζ ζ υ , which is stable, therefore y′  is a minimum-

phase output.  
iii) Since the ISE–optimal trajectories for ( )tζ  and ( )y t  will satisfy (23) for every t , this means they will also satisfy 

( )( ), ( )h t y t′ =ζ υ  for every t , i.e. they will correspond to perfect control of y′  to υ . 
 

Consequently, ( , )y h y′ ′= ζ  is the ISE–optimal choice of statically equivalent minimum–phase output in the sense that its 
perfect control to set point corresponds to ISE–optimality in the original output [11]. 
 



 
 

 

In what follows, a Hamilton-Jacobi formulation and solution method for the optimal control problem (22) will be 
developed, under the following standing assumptions: 
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where sζ  is the equilibrium value of ζ  corresponding to y = υ . 
 
The Hamiltonian function associated with this problem is [2]:  
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the Hamilton–Jacobi equation is [7]: 
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and the optimal control can be derived from the solution to the above equation, as: 
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The above equations must be solved with initial conditions: 
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Under the assumption of analyticity of 0 : n r n rF − −× →\ \ \ , together with assumptions (A1) and (A2) stated in the 
previous section, there exists a unique analytic solution in a neighbourhood of s=ζ ζ , such that the dynamics 

( )0 , ( )∗=� F yζ ζ ζ  is locally asymptotically stable [8]. The solution for ( )V ζ  is locally positive semidefinite.  

 
Given the local analyticity property of the solution, it is possible to seek for the solution in the form of a Taylor series 
expansion and, recursively try to determine the Taylor coefficients up to a certain truncation order [8]. When this approach 



 
 

 

is applied to the leading terms of the Taylor series expansion (quadratic terms in ( )V ζ  and linear terms in ( )y∗ ζ ), one 
obtains the solution for the linear–quadratic approximation of the problem: 
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where P  is the solution of the quadratic matrix equation: 
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that makes  ( ) ( ) ( )0 0 0, , ,s s s
F F F

P
y y
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  Hurwitz. 

 
The procedure can, in principle, continue, to determine the coefficients of the higher-order terms of the Taylor series 
expansion of the solution, but the resulting algebraic equations are nonlinear and extremely complex. However,  as in the 
previous section, the solution of the Hamilton-Jacobi equations (30) can be facilitated by applying the Newton-
Kantorovich iteration.   

 In particular, for the nonlinear operator ( )
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and therefore, the Newton-Kantorovich iteration involves solving the following linear equations at each step of the 
iteration: 
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Solving (37) for ( )* *
1+ −N Ny y , substituting the result into (36), rearranging and collecting terms, the  

Newton-Kantorovich iteration takes the form: 
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Equation (38) is a Zubov partial differential equation with unknown 1( )NV + ζ , which can be solved using the recursive 

series solution algorithm of [5]. Once the solution of (38) is computed, (39) determines directly 1( )Ny∗
+ ζ . 

The Newton–Kantorovich iteration can be initialized with 1( )V ζ  quadratic and 1 ( )y∗ ζ  linear, obtained from the linear–
quadratic approximation of the problem, given by (32) and (33), and then, progressively increasing the truncation order in 
the solution of the Zubov equation for 1( )NV + ζ  and the corresponding 1( )Ny∗

+ ζ .  
 

V. EXAMPLE 
Consider a nonisothermal continuous stirred tank reactor (CSTR) of constant volume V, in which the following 
series/parallel reaction takes place: 
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The mass and energy balances that describe the dynamics of the reactor are: 
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                              (40) 

 

where AC , BC  are the molar concentrations of A  and B  respectively, T  the temperature of the reactor, F
V

 the dilution 

rate, mixρ  the density of the mixture, PC  the heat capacity, iH∆  the heats of the reaction and HQ  the constant rate of the 
heat removed per unit volume. The rate coefficients are given by the Arrhenius equation 0( ) exp( / )i i ik T k E RT= − , 

1, 2,3i = . All the constants and parameters are given in Table 1 [6]. 
 
 

TABLE 1 
CONSTANTS AND PARAMETERS OF THE SYSTEM 

 
12 1

10 1.287 10k h−= ⋅  12 1
20 1.287 10k h−= ⋅  9

30 9.043 10 /( )k L mol h= ⋅ ⋅  
1 / 9758.3=E R K  2 / 9758.3=E R K  3 / 8560=E R K  

1 4.2 /H kJ mol∆ =  2 11 /H kJ mol∆ = −  3 41.85 /H kJ mol∆ = −  
0.9342 /mix kg Lρ =  3.01 /( )PC kJ kg K= ⋅  451.51 /( )HQ kJ L h= − ⋅  

0 5 /AC gmol L=  0 403.15T K=   
 



 
 

 

The control objective is the optimal regulation of the output By C=  at set point by manipulating the dilution rate F
V

. In 

particular, the controller must bring the system to the final steady state of 1.0774 /=AsC mol L , 0.8181 /=BsC mol L  and 

403.15=sT K, which corresponds to ( ) 112.5418 −=
s

F V h . 

 
The system (40) has relative order 1=r  and can be transformed to normal form (19) via the coordinate transformation  
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The transformed system is: 
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                                  (42) 

 

where { }0
0 2exp / ( )= − −i i ik E R T yκ ζ , 1, 2,3i = .  

The first two equations of (42), with the output y  at its reference steady-state value, represent the zero dynamics.  
 
Coordinate transformation (41) maps the desirable final steady state to 1 4.7948ζ =s , 2 0ζ =s  and 0.8181 /=sy mol L . A 
straightforward calculation of the eigenvalues of the Jacobian of the zero dynamics shows that the system is nonminimum-
phase at the desirable final steady state. 
 
System (40) or (42) will be controlled to the desirable final steady state through two alternative methods:  
a) direct calculation of the optimal state feedback by minimizing a quadratic performance index representing a combination 
of an error measure and a control effort measure (composite index)  
b) calculation of the ISE-optimal minimum-phase output and input/output linearization on that output 
 
a) optimal state feedback with respect to composite quadratic index  
 
Using deviation variables:  
 

1
s

A Ax C C= − , 2
s

B Bx C C= − , 3
sx T T= −  ( )/ su F V F V= −  

 
the system (40) is put in the form of system (1) and the objective is to compute the optimal state-feedback control law, so 
that the following performance index is minimized: 

{ }2 2
2

0

J x ρu dt
∞

= +∫                                                                                                                                      (43) 

The Hamilton-Jacobi equations for this case (1 input, 1 output and 3 states) take the form: 
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where ( )1 2 3 4, , ,u x x x x∗  satisfies: 
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                                                            (45)     
Equations (27) and (28) were solved using the symbolic program MAPLE, applying the Newton-Kantorovich iteration 
method described in the previous section, with initial conditions (16) and (17). At step N of the Newton-Kantorovich 
iteration, the Zubov equation (13) was solved via power series up to truncation order (N+2) and the resulting feedback 
function was calculated from (14) up to order (N+1). In this way, the truncation order was progressively increasing from 
iteration to iteration. 
 
Table 2 contains representative times of program runs as a function of the truncation order for V, for the particular 
hardware profile of our computer (CPU 2.8 GHz and RAM 1 GB).  For comparison, a MAPLE program was also written 
using Lukes’ method and run on the same computer.  This program could only be run for 3rd order truncation.  For higher 
truncation orders, the program could not finish after a day of running. 
 

TABLE 2 
REPRESENTATIVE RUN TIMES 

 
 Truncation Order for V Time(s) 

Iteration 1 3 0.7 
Iteration 2 4 0.8 
Iteration 3 5 2.0 
Iteration 4 6 3.6 
Iteration 5 7 6.4 
Iteration 6 8 11.9 
Iteration 7 9 23.8 
Iteration 8 10 36.2 

 
Figures 1 and 2 depict the optimal closed-loop responses of output BC  and input F V , for a step change in the set-point 

from 0.885 to 0.8181 and for different truncation orders, 2,3, 4,5,7,10N = , with input penalty weight 310ρ −= .  It is 
clearly seen that the polynomial approximation converges from 4 th−  order truncation and over. 
 

 
 

Fig. 1. Optimal output responses to a step change in the set point from 0.885 to 0.8181, for 310ρ −=  
( 2,3, 4,5,7,10N = ) 

 



 
 

 

 
 

 

Fig. 2. Optimal input responses to a step change in the set point from 0.885 to 0.8181, for 310ρ −=  
( 2,3, 4,5,7,10N = ) 

 
The effect of the weight coefficient ρ  on the optimal closed-loop system response has also been studied. Figures 3 and 4 
show the responses for the same step change in the set point and for three representative values of the weight coefficient, 

510ρ −= , 310ρ −= , 110ρ −= .  The calculations were made for 10 th−  order truncation.  It can be observed that small 
values of ρ  give faster output responses but unrealistically large deviations in the dilution rate.  On the other hand, large 
values of ρ  give slower responses. 
 

 
 

Fig. 3. Optimal output responses to a step change in the set point from 0.885 to 0.8181, for 10N =  
( 510ρ −= , 310ρ −= , 110ρ −= ) 

 



 
 

 

 
 

 
Fig. 4. Optimal input responses to a step change in the set point from 0.885 to 0.8181, for 10N =  

( 510ρ −= , 310ρ −= , 110ρ −= ) 
 
 
b) input/output linearization on the ISE-optimal synthetic output 
 
Using deviation variables 1 1 1ζ ζ ζ= − s , 2 2 2ζ ζ ζ= − s  and = − sy y y , the problem becomes the one of regulating the 
given nonminimum-phase system at the origin. In terms of deviation variables, the ISE criterion takes the form: 
 

 2

0

1
2

∞

= ∫ISE y dt                                         (46) 

 

and the Hamilton-Jacobi equations are of the form 
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                                    (48) 

 

where 1 1 2( , , )F yζ ζ  and 2 1 2( , , )F yζ ζ  are the right-hand sides of  the first two equations of (42) in deviation variable form. 
 
The Hamilton - Jacobi equations (47)-(48) were solved applying the Newton-Kantorovich iteration method described in 
the previous section. The iteration was initialized with V  quadratic and *y  linear, obtained from the solution of the linear-
quadratic approximation of the problem (32)-(34). At step N of the Newton-Kantorovich iteration, the Zubov equation (38) 
was solved using the recursive series solution algorithm of [5] up to truncation order (N+2), leading to a (N+2)-th order 
approximation for V and the resulting feedback function was calculated from (39) up to order (N+1). In this way, the 
truncation order was progressively increasing from iteration to iteration. The calculations were performed using the 
symbolic program MAPLE. Table 3 contains representative times of program runs as a function of the iteration number, 
for the particular hardware profile of our computer (CPU 2.8 GHz and RAM 1 GB).  
 
 
 
 
 



 
 

 

 
TABLE 3 

RUN TIMES FOR THE PROGRAM SOLVING THE HAMILTON-JACOBI EQUATIONS 
 

 Time (s) 
Iteration 1 (3rd order truncation for V) 9.5 
Iteration 2 (4th order truncation for V) 49.5 
Iteration 3 (5th order truncation for V) 1700.2 

 
 

Figure 5 depicts the approximations of the solution 1 2( , )NV ζ ζ  for truncation orders N=2,3,4,5. In Figure 5, the quadratic 
initial condition (N=2) is at the top, the result after 1 iteration (N=3) at the bottom, and the results for N=4,5 essentially 
coincide in the middle. This indicates that convergence has been achieved after 2 iterations within the ranges of 1ζ and 2ζ  

shown. A similar diagram was constructed for 1 2( , )y ζ ζ∗ (not shown), that indicated numerical convergence after 1 
iteration, within the same ranges. 

 

Fig. 5. Approximate solution for 1 2( , )V ζ ζ  for truncation orders N=2, 3, 4, 5 
 
 
For nonminimum-phase compensation, the synthetic output 
 

 1 2( , )y y y ζ ζ∗′ = −                                    (49) 
 

is used, which is a statically equivalent minimum-phase output and, moreover, perfect control of y′  to 0 corresponds to 
ISE–optimality in y . An input/output linearizing state feedback law with respect to the synthetic output map (49) is then 
applied to regulate y′  to 0. 
 
Figures 6 and 7 show the resulting closed-loop responses of output By C=  and synthetic output y′ , for a step change in 
the set-point from 0.85 to 0.8181 and for different closed-loop time constants, τ=10-2, 10-3, 10-4 and 10-5. The calculations 
were performed using the 4-th order approximation for ∗y . As the closed-loop time constant τ tends to zero, the resulting 
closed-loop responses converge to the ISE-optimal responses. 
 
 



 
 

 

 
Fig. 6. Closed-loop responses of output = By C  for a step change in the set point from 0.85 to 0.8181  

(τ=10-2, τ=10-3, τ=10-4, τ=10-5) 
 
 
 

 
Fig. 7. Closed-loop responses of synthetic output y′  for a step change in the set point from 0.85 to 0.8181  

(τ=10-2, τ=10-3, τ=10-4, τ=10-5) 
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