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Abstract— In chemical process engineering, engineers are
dealing with all kinds of models with arbitary complexities.
Nevertheless these models can be decomposed into a number
of atomic, simple thermodynamic systems according to different
modeling requirements. Simple thermodynamic system is, by
definition, a system that is devoid of any internal adiabatic,
rigid, and impermeable boundaries and is not acted upon by
external force fields or inertial forces. The state of a simple ther-
modynamic system can be determined by some state variables.
In this work, we present a new formulation of modeling the
simple, open thermodynamic system. In this formulation, balance
equations of mass and energy are formulated at first. Apart
from the conventional approach, which solves energy balance
by transforming the energy representation in terms of extensive
quantities to temperature explicit representation which is in
terms of intensive quantity, we keep the energy balance equation
in the form of extensive quantity. The internal energy is calculated
from Helmholtz free energy which contains a group of energy of
ideal gas mixture and a group of residual energy that deviates
from the ideal state. By providing the information of equation of
state (EOS) and heat capacity, this procedure can be performed
routinely and one of the great advantages is the calculations of all
the relevant intensive quantities can be performed by evaluating
the partial derivatives of Helmholtz free energy. A tank example
which can be modeled as a simple open thermodynamic system
according to this method has been built and presented.

Index Terms— modeling, thermodynamic system, energy bal-
ance, tank, Helmholtz.

I. INTRODUCTION

Modeling an thermodynamic system is required by many
models used in chemical engineering as the units, chemical
processes, even a plant can be built based on this generic ther-
modynamic system. The purpose of this paper is to introduce
a novel formulation of model equations on this open system.

As the balance equations of an open system are obtained,
transformation of the energy balance may be dealt with in two
ways: 1) transform the extensive representation to temperature
explicit representation, and 2) keep the form of the energy
balance equation untouched. The conventional approach that
has been widely used in the past is to transform the extensive
representation of the internal energy to enthalpy by using
thermodynamic correlation at first. Then take an approximate
form of heat capacity correlation, normally is a function of
temperature solely to establish the relation between temper-
ature and enthalpy. Finally the time derivative of enthalpy
can be converted to the time derivative of temperature. This
transformation is straightforward and as a consequence, the
system equations end up with T -explicit, ordinary differential
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equation set. This approach is primary used when the system
is single phase and the affection of pressure to enthalpy is
not significantly large. The disadvantage of this approach is
that the model generated is not so generic because in order
to get the temperature derivative, the model has to undergo
a series of assumptions and become a less generic system.
This disadvantage led to the exploration of alternative mean
for obtaining model representation.

The novel formulation intends to keep the extensive quan-
tities in the balance equation. To find the relationship be-
tween internal energy and other desired intensive quiantities,
Helmholtz free energy is chosen as state variable describing
the system energy. Each desired intensive quantities appears
as the derivatives of the Helmholtz energy. This formulation
is built based upon the rigorous concept of thermodynamic
relations of state variables and the understanding of nonideal
fluid behavior as well as the practical mathematical method,
Legendre Transformation, which is used to convert the rela-
tions between U , H and A. The new formulation proposed
in this paper decouples the contribution of ideal gaseous
mixture and residual contribution to the Helmholtz energy and
appears to be more flexible and generic since a wide varity
of open thermodynamic systems with different equation of
state specifications can be solved by modifing the residual part
only. Additionally, the derivatives of Helmholtz energy can be
determined by the use of symbolic or automatic differentiation
which can improve the efficiency of model building.

Fianlly a stirred tank model that applies the derivation of
such generic balance equation and the transformation has been
demonstrated.

II. SIMPLE, OPEN THERMODYNAMIC SYSTEM

There is a special class of systems that plays a central
role in the developments of chemical process models. These
systems, which is reffered as simple thermodynamic system.
Simple thermodynamic system is, by definition, a system that
is devoid of any internal adiabatic, rigid, and impermeable
boundaries and is not acted upon by external force fields or
inertial forces. The state of a simple thermodynamic system
can be determined by some state variables.[2] An open system
includes the mass, energy interactions between itself and envi-
ronment which is existed as flows of extensive variables, and
the production taking place within different chemical species.
The open system corresponds to the “Lumped system” in many
aspects which is the system considered as homogeneous that
all the intensive variables do not show any spartial variation in
the scalar field. All the state variables which describes the state
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of instest, are uniform[4]. Another concept is the composite
system which is a system composed of two or more simple
subsystems. The behavior of each simple system results in the
behavior of the composite system.

The process model can be recursively decomposed into sub-
models and devices such as process units, parts of process units
or phases, eventually into a number of elementary, simple,
open thermodynamic systems being linked by connections.
This model decomposition ideal has been applied into many
practical modeling tools, such as Modeller[10], Modkit [7]
and gPROMS [6], etc. Therefore the key part of formulations
of various process model is essentially the formulation of a
simple, open thermodynamic system.

III. CONVENTENTIONAL FORMULATION

Most of the algorithms handle a dynamic open thermody-
namic system in the following steps: (1) formulate mass and
energy balance equations (here we exculde the momentum
balance for the reason of simplicity though eliminating fluid
dynamics is not always the case) in the form of extensive
quantities; and (2) transform the energy balance in terms of
one of the extensive quantities, normally internal energy, to
a temperature-explicit equation by manually analytical deriva-
tions together with a series of reasonable assumptions. An
example from[4] illustrate this common approach:

Fig. 1. General open system

A. Balance Equations
Expressions of mass and energy balance equations follow

the conservative law of extensive quantities:

dni

dt
=

p∑
j=1

fi,j −
q∑

k=1

fi,j + νirV (1)

dE

dt
=

p∑
j=1

Fj (h + kE + pE)j

+
q∑

k=1

Fk (h + kE + pE)k + Q + W (2)

B. Transformation of Energy Balance Equation
1) Assumption 1: The kinetic (kE) and potential energy

(pE) can be neglected lead to the right-hand side terms are
written in terms of specific enthalpies. The left-hand side
represents the total internal energy of the system.

dU

dt
=

p∑
j=1

Fjhj −
q∑

k=1

Fkhk + Q + W (3)

2) Assumption 2: In many cases, enthalpy is the perferable
variable over internal energy. Applying the thermodynamic
relation (U = H − pV ) and assume p and V are constant
so that the time derivatives of both two are neglected, then:

dH

dt
=

p∑
j=1

Fjhj −
q∑

k=1

Fkhk + Q + W (4)

3) Assumption 3: If the variation of specific enthalpy of
the system due to pressure are not significant, such as the
liquid system, the specific enthalpies of system and outlet are
assumed to be equal. (h = hk k = 1, · · · , q), yields:

dH

dt
=

p∑
j=1

Fjhj −
q∑

k=1

Fkh + Q + W (5)

4) Assumption 4: From Eq.(5) we see that the enthalpies
are evaluated at temperature conditions of feeds (Tj) and also
at the system temperature (T ). By making certain assumptions
about the enthalpy representation, further simplifications can
be made. The enthalpy of the feed (hj) can be written in terms
of the system temperature T :

hj (Tj) = hj (T ) +
∫ Tj

T

cpjTdT (6)

If we assume that cp is a constant, then

hj (Tj) = hj (T ) + cpj (T − Tj) (7)

Hence, the modified energy balance become:

dH

dt
=

p∑
j=1

Fj [hj + cpj (Tj − T )]

−
q∑

k=1

Fkh + Q + W (8)

5) Assumption 5: Note that enthalpy is a function of
temperature, pressure and the moles of species, giving H =
f (T, p,n) and hence the time derivative of this relationship
is given by

dH

dt
=

„
∂H

∂T

«
p,n

dT

dt
+

„
∂H

∂p

«
T,n

dp

dt
+
X

i

„
∂H

∂ni

«
T,p

dni

dt
(9)

The first term of right-hand side appears to have cp =(
∂H
∂T

)
p,n

. In case of liquid systems, the term
(

∂H
∂p

)
T,n

is

close to zero and is identically zero for ideal gases. The
term

(
∂H
∂ni

)
T,p

is the partial molar enthalpy of species i. By

substituting the mass balance, the last term can be transformed
to a term containing the change in molar enthalpy for reactions
and is denoted as ∆HR, or the heat of the reaction. Hence,
the final expression for the energy balance can be written as:

V ρcp
dT

dt
=

p∑
j=1

Fjcpj (Tj − T )

+ rV (−∆HR) + Q + W (10)

Now the energy balance equations has been transformed from
temperature implicit expression to the temperature explicit
expression. This is the most common form of energy balance
for reacting systems. The first term on the right-hand side
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represents the energy needed to adjust all feeds to the system
conditions. The second represents the energy generation or
consumption at the system temperature. The last two terms
are the relevant heat and work terms.

IV. FORMULATION USING HELMHOLTZ FREE ENERGY

A. Legendre Transformation

It is known from thermodynamics that the relationship of
internal energy U = f (S, V,n) completely describes all of the
stable equilibrium states of a simple system. This relationship
is called the Fundamental Equation and the above expression
is termed internal energy representation.

In the energy representation of the Fundamental Equation,
the properties S, V , n are treated as independent variables.
This is not always convenient set of independent parameters.
For example, since temperature can be measured much more
conveniently than entropy, we might like to use T , V , n as
the independent variables.

The strategy behind the use of Legendre transforms is to
shift the dependence of a function from one independent
variable to another (the derivative of the original function with
regard to this independent variable) by taking the difference
between the original function and their product. They are used
to transform among the various thermodynamic potentials.

For example, the Legendre transformation of U with respect
to TS

A = U − TS (11)

T =
(

∂U

∂S

)
V,n

(12)

becomes a function of the intensive quantity, temperature,
volumn as natural variables[2].

B. Choice of Helmholtz Free Energy

In thermodynamics, the Helmholtz free energy is a ther-
modynamic potential which measures the “useful” work ob-
tainable from constant temperature, constant volume thermo-
dynamic systems. For a simple system, with a fixed number
of particles, the negative of the difference in the Helmholtz
energy is equal to the maximum amount of work extractable
from a thermodynamic process in which temperature is held
constant.

In principle it makes no difference whether a thermo-
dynamic system choose U , H , A or G to construct the
Fundamental equations. In addition, one can freely use the
one from each of the following pairs: S, T ; V , P ; n, µ
(These pairs of variables are usually referred to as conjugate
coordinates) as independent variables[2]. For a system of
constant composition U , H and S are the most dominant
functions, however, in a mixture the chemical potential is
becoming increasingly more important. In order to let T
instead of S as a independent variable, either Gibbs free
energy (G) or Helmholtz free energy (H) can be chosen since
µi = (∂G/∂ni)T,p,nj 6=i

= (∂A/∂ni)T,V,nj 6=i

The residual function of Helmholtz free energy is defined as
the difference in Helmholtz energy between a real fluid and

ideal gas at a given temperature, volume (not pressure) and
composition. In this case the form of integration is simpler
since T, V,n are the canonical variable set of Helmholtz free
energy. Moreover, applying the residual function of Helmholtz
energy at same volume has another advantage of making the
pressure explicit in the integration. This is especially beneficial
as most of the existing equation of state are given as the
function explicit in pressure rather than volume[3]:

Ar,V (T, V,n) = A (T, V,n)−Aig (T, V,n)

=
∫ V

∞

(
NRT

V
− p

)
dV (13)

C. System Equations

The new derivation of system equations diverges from
Eq.(3). Instead of transforming the extensive energy balance
equation to temperature explicit, we keep the equation un-
changed as the extensive quantities remaining in the expres-
sion.

dU

dt
=

p∑
j=1

Fjhj −
q∑

k=1

Fkhk + Q + W (14)

The next step is to construct the expression of Helmholtz
energy and to link it with internal energy. The chemical
potential of gas (either ideal or real) at certain temperature
(T ) and pressure (p) can be related to a reference chemcial
potential at same temperature (but at a reference pressure)
together with a pressure integration. For ideal gas:

µig
i (T, p,n) = µ◦i (T, p◦) + RT ln

(
nip

Np◦

)
(15)

µ◦i (T, p◦) = h◦f,i (T◦) +
∫ T

T◦

c◦p,i (T ) dT

− Ts◦i (T◦, p◦)− T

∫ T

T◦

c◦p,i (T )
T

dT (16)

Applying the thermodynamic relation A = G − pV , the
Helmholtz energy of ideal gas mixture can be represented as:

Aig(T, V,n) = Gig(T, V,n)− pV

=
∑

i

niµ
ig
i −NRT

=
∑

i

niµ
◦
i (T, p◦)

+ RT
∑

i

ni ln
(

niRT

V p◦

)
−NRT (17)

Transforming Eq.(13), one get the representation of Helmholtz
energy of real fluid as the sum of two contributions from ideal
gas and residual.

A (T, V,n) = Aig (T, V,n) + Ar,V (T, V,n) (18)

Subquently, the internal energy can be easily obtained by using
intergrated form of Legendre Transformation:

U = A + TS = A− T

(
∂A

∂T

)
V,n

(19)
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Likewise, the enthalpy, which also appears in Eq.(3) can be
presented as:

H = A + TS + pV

= A− T

(
∂A

∂T

)
V,n

−
(

∂A

∂V

)
T,n

V (20)

Note that the 1st-order derivatives of Helmholtz free energy
with respect to its canonical variables generated as the conju-
gate coordinates of the canonical variables of Helmholtz free
energy, and all of them are the functions of T, V,n:

S(T, V,n) = −
„

∂A

∂T

«
V,n

= −
„

∂Aig

∂T

«
V,n

−
„

∂Ar,V

∂T

«
V,n

(21)

p(T, V,n) = −
„

∂A

∂V

«
T,n

= −
„

∂Aig

∂V

«
T,n

−
„

∂Ar,V

∂V

«
T,n

(22)

µi(T, V,n) =

„
∂A

∂ni

«
T,V

=

„
∂Aig

∂ni

«
T,V

+

„
∂Ar,V

∂ni

«
T,V

(23)

Thus, combining the equations Eq.(14), Eq.(17), Eq.(18),
Eq.(19),Eq.(20), Eq.(21), Eq.(22), Eq.(23) yields the complete
set of system equations for an simple, open thermodynamic
system.

V. DISCUSSION

A. Assumptions Reduction

A common job in dealing with the models in chemical
process engineering is to narrow down the huge scale of
potential models. To that end, a number of choices (assump-
tions) need to be made in the course of developing a model.
Good modeling assumptions make works easier and don’t
adversely affect the results, while bad ones will produce
results that diverge wildly from reality. For example, in the
conventional approach, neglecting kinetic and potential energy
would probably be a good assumption if momentum balance
is not being taken into account. However, assumption 4,
assuming the specific enthalpy of the feed can be written in
terms of system temperature, Eq.(6), is not a very realistic one
because specific enthalpy is a function of temperature, pressure
and composition. Specific enthalpy in the inlet is normally
different from the tank since the two compositions can hardly
be the same, especially chemical reactions are taking place.

Considering some of these assumptions as fixed throughout
the conventional approach, we can find it does not mean that
there is no other valid assumption, but a single approach
cannot cover everything in this context. For example, heat
capacity can be evaluated by polynomials instead of being
assumed as constant. Therefore, the new representation has
the advantage of making minimum number of assumptions
which brings the possibility of making more accurate model
without losing too much informations.

B. Flexibility
The new formulation decouples the expression of Helmholtz

free energy of real fluids into two groups. The ideal gas
mixture group and a residual group. The contribution of the
first group remains unchanged in any models while the second
group is up to the modeler’s choice. They can change the
equation of state model, for example, to adapt the requirements
of the model. Correspondingly, the residual group is being
modified. There is no need to rearrange the whole set of
the equation systems. As a consequence, new formulation
instinctively facilitates extensions of adding more modeling
flexibility that allows modeler to explore multiple design
options to satisfy stated modeling goals and reuse the previous
model with ease and accuracy.

C. Phases Equilibrium Calculation
Meanwhile the new formulation can also extend the treat-

ment to multiphase equilibrium calculation with minimum
modifications. By introducing temperature, pressure and com-
ponent chemical potential for each phases and applying the
criteria of phase equilibria:

Tα = T β = · · · = T γ = · · · = Tπ

pα = pβ = · · · = pγ = · · · = pπ

µα
i = µβ

i = · · · = µγ
i = · · · = µπ

i (i = 1, · · · , nC)

then, changing the chemical potential regarding to a whole
system to the potentials to each phases, we obtain modified
equation systems, and the transformations can then be carried
out to compute the component compositions of chemical
species in each phase.

Note that the above criteria for coexistence of phases in
equilibrium indicates that temperatures, pressures and com-
ponent chemical potentials are equal in each phases. These
criteria are also valid if chemical reactions occur in one or
more phases. They may not, however, necessarily be valid if
there are any constraints to the flow of mass or energy between
phases (To deal with problems in this category, it is preferable
to seperate the two phases into two systems).

D. Calculation of Derivatives
We noticed that a great deal of the efforts of making

assumptions in the conventional approach is to transform
the internal energy representation to the temperature explicit
representation. In the new formulation, temperature is obtained
by applying Legendre Transformation and this makes the an-
alytical calculation of the partial derivatives of the Helmholtz
free energy a simple task.

Several methods can be used to perform this calculation.
Besides the numerical differentiation, it is of a particular
interest to apply symbolic differentiation[8] in that it finds
the derivative of a given formula with respect to a specified
variable, producing a new formula as its output. This symbolic
mathematics manipulate formulas to produce new formulas,
rather than performing numeric calculations based on formu-
las. Therefore in order to make the formulation more generic,
symbolic treatment is an excellent choice. Alternatively, auto-
matic differentiation [1], [9] may become a good solution.
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E. Minimum Information

In this representation, the Holmholtz free energy is the key
element need to be solved in order to get other thermodynamic
quantities. Now we have seen that through the mass and
Helmholtz free energy representation, one can develop any
thermodynamic quantities of a system. However, we are also
keen to answer the question that what is the minimum infor-
mation we need to establish the representation of Helmholtz
free energy?

We can see that three parts of information are necessary.
First is the relationship of p − V − T , i.e. the equation of
state (EOS) of the real mixture that is explicit in pressure, p =
f(T, V,n). This is easy to get since most of the EOSs meet this
requirement. Secondly a correlation for the heat capacity of
pure component in ideal gas state should be avaiable. The heat
capacity, in most cases, is a function of temperature, cig

p (T ),
and pressure (very occasionally). Many books containing the
thermo-data express heat capacity in form of polynomial of
temperature, like: cig

p /R = A+BT +CT 2+DT−2. This form
is sufficient enough to calculate the integrations in Eq.(16).
The last one should be provided the data of formation enthalpy
and entropy at standard state of each pure component in the
mixture.

VI. CONCLUSION

In this paper, the conventional approach of modeling general
open thermodynamic systems is reviewed. The new approach
of using Helmholtz free energy with its link to internal energy
rather than transform the energy balance equation to tempera-
ture explicit equation is presented. It is concluded that the new
approach uses less assumptions and therefore more accurate
and more generic. New approach provides a more flexible
formulation because new model can be implemented by only
modifing on the residual part of the Helmholtz free energy.
This is especially effective in development of a number of
models with different EOS specifications, while new equations
are easier to add and changes are less expensive to make.

In addition, it is demonstrated that certain modifications can
transform a single phase system model to a multiphase system
model. By using the new approach, one can determine the
first order derivatives of Helmholtz free energy with respect to
temperature, volumn and molar mass through either numerical
or symbolic treatments. The symbolic, interpretive solution can
be easily adapted and the equation manipulation capabilities
tyically available in such formulation can be used to improve
the efficiency of the modeling work.

APPENDIX I
A TANK EXAMPLE

A stirred tank is being filled with gas mixture which consists
of 5 components: nitrogen, methane, ethane, propane and n-
butane. The temperature, molar flow rate and volumetric flow
rate of inlet stream are given. Outlet stream is manipulated
by a valve and its flowrate has a linear relationship with
the pressure drop within the tank and the environment. The
volume of the tank is 6m3. At initial state, the tank has some
amount of gas inside, with its initial temperature, 298K. As

the gas mixture continuously feeds in, the state of the tank
begin to change. Our work is to get the dynamic behavior of
composition, temperature and pressure inside the tank.

Fig. 2. Sketch of the tank example

A. Balance Equations

The gerneral conservation balance for mass and total energy
over the tank is given by:

dni

dt
= fin,i − fout,i (24)

dU

dt
= Finhin − Fouthout + Q + W (25)

Since the kinetic and potential energy are neglected since they
are not so important to this model E ≈ U . Besides, there is
no convective heat transfer to the tank, so Q = 0.

dU

dt
= Finhin − Fouthout + Q + W (26)

Now we introduce some new variables particularly for transfer
of extensive quantities, also known as flows. We apply the
symbol ˆ to denote the transfer. Thus, Ĥ means the enthalpy
transfer which is a certain amount of enthalpy transfered
within a certain period of time. It has the unit of enthalpy
divided by unit of time. Similarly, we can define Â, Ŝ, and
V̂ representing the Helmholtz free energy flow, entropy flow
and volumetric flow, respectively.

Utank = (A + TS)tank = Utank (Ttank, Vtank,n)

= n · utank (Ttank, Vtank,x) (27)

Ĥin =
“
Â + T Ŝ + pV̂

”
in

= Ĥin

“
Tin, V̂in, fin

”
(28)

Ĥout =
“
Â + T Ŝ + pV̂

”
out

= Ĥout

“
Tout, V̂out, fout

”
(29)

According to the Euler’s rule, enthalpy flow is a function which
is homogeneous to the first degree of molar mass flow. If the molar
mass decreased by a factor of Fin, the value of Ĥ will be decreased
by a factor of Fin as well, namely, the specific enthalpy is obtained.

hin = Ĥin

“
Tin, V̂in, fin

”
/Fin

= hin

“
Tin, V̂in,xin

”
(30)

hout = Ĥout

“
Tout, V̂out, fout

”
/Fout

= hout

“
Tout, V̂out,xout

”
(31)
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in which,
x = n/n, xin = fin/Fin, xout = fout/Fout and n =

P
i ni.

The outlet flow has the same intensive quantities as those
inside the tank and the outlet flow rate is controlled by a valve
that is proportional to the pressure difference between the tank
and surrounding.

T = Tout (32)
p = pout (33)
x = xout (34)

Fout = CV ·
(

p− penv

p◦

)
(35)

B. Equation of State
Redlich-Kwong equation is used as equation of state for

calculation of gas phase properties

p =
RT

V − b
− a

T 1/2V (V + b)
(36)

Ar,V =

Z V

∞

„
NRT

V
− p

«
dV

= NRT ln

„
V

V − Nb

«
+

Na

bT 1/2
ln

„
V

V + Nb

«
(37)

The derivatives of Ar,V for Redlich-Kwong Model:„
∂Ar,V

∂T

«
V,n

= NR ln
V

V − Bc
+

AT

B
ln

V

V + Bc
(38)„

∂Ar,V

∂V

«
T,n

= NRT
Bc

V (V − Bc)
− Ac

V (V + Bc)
(39)„

∂Ar,V

∂ni

«
T,V

= RT ln

„
V

V − Bc

«
+ NRT

bi

V − Bc

+
1

Bc

„
Ai −

Acbi

Bc

«
ln

„
V

V + Bc

«
− Acbi

Bc (V + Bc)
(40)

The coefficients are defined below:

Ωa =
1

9 (21/3 − 1)

ai = Ωa

R2T
5/2
c,i

pc,i

Ωb =
21/3 − 1

3

bi = Ωb
RTc,i

pc,i

a =

 X
i

a
1/2
i yi

!2

b =
X

i

biyi

Ac =
X

i

X
j

“aiaj

T

”1/2

ninj =

 X
i

α
1/2
i ni

!2

Bc =
X

i

bini

AT = −Ac

2T

Ai = 2α
1/2
i

X
j

α
1/2
j nj = 2 (αiAc)

1/2

αi =
ai

T 1/2

C. Thermodynamical Data

Constants in equation cig
p /R = A + BT + CT 2 + DT−2,

T (kelvins)from 298 to Tmax, together with some other
thermodynamic properties of specified components [5].

N2 CH4 C2H6 C3H8 C4H10

Tmax 2000 1500 1500 1500 1500
cig
p298/R 3.502 4.217 6.369 9.001 11.928

A 3.280 1.702 1.131 1.213 1.935
103B 0.593 9.081 19.225 28.785 36.915
106C . . . . . . -2.164 -5.561 -8.824 -11.402
10−5D 0.040

hf [kJ/mol] 0.000 -74.873 -84.684 -103.847 -126.148
s[J/K mol] 191.609 186.214 229.602 270.019 310.227
Tc[K] 126.2 190.4 305.4 369.8 425.2
pc[bar] 33.9 46.0 48.8 42.5 38.0

D. Simulation Results

The volumn of the tank is 6m3. Gaseous inflow is fed
at 298K with the volumetric rate 0.06m3/s and molar flow
rate 50mol/s. The composition of the inflow is set at xin =
[0.05, 0.35, 0.20, 0.25, 0.15]. The chosen refrence state is at
T◦ = 298.15K and p◦ = 101325Pa. At initial state, the tank
constains 5000mol mixture with the composition xtank,ini =
[0.05, 0.35, 0.20, 0.25, 0.15] at the temperature 298K.

The model has been implemented in Matlab 7. The simula-
tion time was specified from 0 to 2000 seconds. As shown in
Fig.(3) and Fig.(4). At the beginning, the inhold of tank tends
to increase as the inlet flow rate is larger than outlet. As the
result, the temperature and pressure inside the tank increase
sharply. Later, with the escalating pressure difference between
the tank and the environment, outlet flow rate become larger
until it equals the inflow rate. It’s shown the model reached the
steady state after about 600 seconds and this result completely
corresponds to the conventional method.

Fig. 3. Molar mass profile inside the tank
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Fig. 4. Temperature and pressure profile inside the tank

NOMENCLATURE

A Helmholtz free energy, first virial coef.
Â Helmholtz free energy flow

B, C, D virial coeficients
CV valve coeficient

E energy
F molar flow rate
G Gibbs free energy
H enthalpy
Ĥ enthalpy flow

∆HR heat of reaction
N total molar mass
Q heat
R gas constant
S enthropy
Ŝ entropy flow
T temperature
Tc critical temperature

Tmax maximum suitable temperature
U internal energy
V volumn
V̂ volumetric flow
W work

f vector of molar flow rate
n vector of component molar mass
x vector of composition

cp specific heat capacity
e specific energy
f component molar flow rate
h specific enthalpy

hf specific enthalpy of formation
kE specific kinetic energy
n component molar mass

nC component number
p pressure

p◦ reference pressure
pc critical pressure
pE specific potential energy

r reaction rate
s specific entropy
t time
u specific internal energy

a, b, ai, bi coeficients in Redlich-Kwong EOS
Ac, Bc, AT , Ai coefficients in derivatives of RK model

Greek letters
ν stoichiometric coefficient
µ chemical potential
ρ density

Ωa,Ωb coeficients in Redlich-Kwong EOS

Subscripts
i component index
j inflow index
p inflow number
k outflow index
q outflow number
◦ at reference state

in inflow
out outflow

tank tank
env environment
ini at initial state

Superscripts
r residual

V constant volumn
ig ideal gaseous mixture
◦ at reference state

α, β, γ phase index
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