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Abstract 
 
The thermal denaturation (melting) of DNA molecules is a thermodynamic and 
conformational order-disorder transition from a double-stranded to a single-stranded state. 
Modeling DNA melting at the atomistic level is severely hampered due to the time and 
length scales of this transition. We propose a coarse-grained model where DNA strands 
are represented as oligomer chains of N beads using the single-site bond-fluctuation model 
on a cubic lattice. This approach incorporates physically relevant characteristics such as 
the sequence and orientation dependence of base-stacking and base-pairing interactions, 
as well as the semiflexibility of the chains. We perform parallel tempering Monte Carlo 
simulations of dilute solutions of short DNA strands in the canonical ensemble. Due to the 
strong short-ranged and anisotropic nature of the interactions, we employ various biased 
trials to improve the phase-space sampling. Feedback optimization of the temperature 
distribution and multihistogram reweighting techniques were used to obtain accurate 
estimates of the transition temperature. This procedure allows the direct calculation of 
thermodynamic and conformational properties across the thermally induced order-disorder 
transition. We explore how the interaction heterogeneity, broad stacking transition and 
chain stiffness may induce specific heat capacity effects, shift the location of the melting 
temperature and broaden the transition. Overall, the phenomenological behavior predicted 
is in qualitative agreement with experimental observations. 
 

Introduction 
 

The opening and winding of double stranded DNA is a ubiquitous phenomenon in 
biological systems. Processes involving replication and transcription of DNA require a 
localized unwinding and renaturation for every region of its sequence. The accurate 
prediction of the DNA melting temperature (Tm) is of tremendous importance in the 
experimental performance and outcome of several molecular biology techniques including 
genome sequencing, expression (microarrays) and amplification (PCR) methods [1]. In 
recent years, DNA recognition properties are becoming increasingly important for 
biosensors applications and biologically conjugated nanomaterials for nanotechnology 
applications [2].  
 

Understanding the principles governing double helix formation is essential for 
understanding and predicting the properties of nucleic acids in general [3]. Thermodynamic 
studies on short sequences of DNA (also known as oligonucleotides) provide a convenient 
way for discovering these principles and facilitate the rational design of sequences for the 
various applications mentioned above [4]. Melting experiments of oligonucleotides have 
attracted a vast amount of experimental and theoretical research since the late 1950’s and 
early 1960’s [5]. In addition to experiments and theory, a comprehensive understanding of 



the thermodynamic behavior of this process can be achieved by computer simulation 
methods. However, as commonly occurs with complex associating or self-assembling 
systems [6], e.g., spontaneous micelle formation in surfactant solutions, the time and length 
scales of the collective behavior of DNA melting in solution (even for the case of oligomers) 
are not accessible to atomistic simulations. A novel molecular simulation approach 
proposed here aims to deal with fundamental aspects related to the thermally-induced 
denaturation transition of oligomer DNA strands in solution. This approach couples a simple 
and computational efficient lattice model in three dimensions with advanced computer 
simulation techniques based on the Monte Carlo method. 

 
In this article, we present a multicanonical Monte Carlo simulation study of model 

DNA chains. We first describe the details of the lattice model implemented. We next explain 
briefly the methodologies employed to study the thermodynamical stability of the model 
chains across the denaturation transition. In the following section, we present and discuss 
the results obtained for different case studies. In the last section, we summarize the main 
conclusions from this study. 
 

Model 
 

We consider a solution with M oligomer chains of N beads (where N < 16). The 
system is composed of an equimolar binary mixture of single strands with full or partial 
complementarity. The space is discretized into a three-dimensional simple cubic lattice with 
volume V = L3, where L is the length of the simulation box. Periodic boundary conditions 
are implemented in all three dimensions. Single-stranded DNA chains are modeled by a 
sequence of connected lattice sites, where each nucleotide (base and sugar-phosphate 
backbone) represents a single monomer unit. The monomer beads, with diameter σ equal 
to the lattice spacing, are connected following the single-site bond fluctuation model with a 
coordination number of z = 26. Therefore, successive beads on a chain are joined by a 
vector from the set (0,0,1), (0,1,1) and (1,1,1) and equivalent vectors resulting from 
reflection operations on the cubic lattice. This coordination number is higher than that of the 
simple cubic lattice (z = 6), which means that the chain not only has greater bending angles 
available but also three possible bond lengths with values of 1, √2 and √3 lattice units. 
Monomeric solvent particles are assumed to fill all the lattice sites not occupied by chain 
segments; however, the solvent is not explicitly taken into account, i.e., solvent-solvent and 
solvent-nucleotide energy parameters (εss and εsn) are set to zero. This implies that the 
strands are assumed to be in a θ-solvent, which is a reasonable assumption for DNA in 
most aqueous solutions [7]. 
 

The thermodynamic stability of DNA oligomers depends strongly on base 
composition and sequence. In our implementation, the heterogeneity in the monomer 
distribution along the chains is explicitly incorporated by considering four different 
nucleotides units representing the purine and pyrimidine bases: adenine (A), thymine (T), 
cytosine (C) and guanine (G). Hence, our model strands could be thought as 
heteropolymer lattice chains with a sequence space comprised of four letters (A, T, C and 
G), arranged in a prespecified order which is not necessarily random in nature since DNA 
carries genetic information. The DNA lattice chains are labeled with a predefined direction 
between the 3' and 5' ends, such that the double-stranded sequence complementarity runs 
in opposite directions. Hence, antiparallel association is only the result of the imposed order 



in the sequence, and does not originate from any sterical constraints as for real nucleic 
acids. It should be noted that in this discretized model, although highly computationally 
efficient, the detailed chemical structure of the double-helix conformation is completely 
neglected. Nevertheless, lattice models have been extensively applied because they are 
known to retain universal features of polymers [7]. 
 

All lattice chains considered in this model are mutually- and self-avoiding, so that 
hard-core monomer beads interact directly by exclude volume. The anisotropic hydrogen 
bonding interactions, resulting from neighbor pairs of complementary monomers, are 
included explicitly as associating sites pointing in any of the z = 26 directions. Thus, a pair 
of free lattice beads is allowed to bind only when they are in neighboring positions (square-
well type potential) and their hydrogen-bonding sites are oriented towards each other. Each 
monomer can interact only with one monomer at a time, so the bond is said to be saturating. 
The base-pairing energy parameters εHB,ij, where the pair ij can be any combination of the 
four nucleotides, is represented by a WC-pairing compliant matrix. Intra-chain base-
stacking is also considered explicitly by a favorable interaction for consecutive beads with 
bonding sites pointing in the same direction. The matrix elements of the stacking energy 
parameter εST,ij take into account the heterogeneity of the sequence. All energy parameters 
(scaled with respect to εHB,AT) come from the most accurate quantum mechanical 
calculations in the gas phase to this date [8,9]. However, we have introduced an additional 
ad-hoc rescaling of the stacking energies to account for the solvation effects and higher 
stability with respect to the hydrogen-bonding in aqueous solution. The reduced 
temperature is then defined as T* = kBT/εHB,AT, where T is the absolute temperature and kB 
Boltzmann's constant. To model the conformational change in chain stiffness associated 
with the melting transition, we include a bending potential between successive bond 
vectors as in previous models for stiff lattice homopolymers and surfactant chains [11, 12]. 
The bending parameter in this potential was adjusted with trial runs in order to reproduce 
approximately the persistence length of the single- and double-stranded DNA at low and 
high fraction of association, respectively.  

B

 
In order to simplify the configurational sampling of phase space, we assume 

neutral chains. Therefore, electrostatic interactions are not included either explicitly or 
implicitly. Although clearly an oversimplification, since DNA strands are negatively charged 
polyelectrolytes, theoretical studies have already considered that the total melting free 
energy may well be expressed as uncoupled contributions from electrostatic and non-
electrostatic interactions, which are computed separately [13]. Moreover, coarse-grained 
continuous molecular dynamics (MD) simulation models have neglected the electrostatic 
contributions in order to decrease the number of degrees of freedom and have access to 
the time-scale of hybridization events for a single pair of strands [14,15]. Nevertheless, we 
opted to simulate dilute solutions in all cases, i.e., well below the overlap threshold φ* 
defined as φ* = N/(4/3πRg

3), where Rg is the radius of gyration. At these conditions, 
minimal electrostatic interactions between DNA strands are expected in well-screened 
solutions. 
 

Simulation Methods 
 
The Monte Carlo (MC) simulations were performed in the canonical ensemble 

where the temperature, number of chains and volume are held constant (NVT) [16]. The 



length of the simulation box used (L) is selected such that it is at least 10 times larger than 
the radius of gyration of the strands at the largest extension. We implemented a mixture of 
biased trials that bridge the slow and fast relaxation events. For the short time-scales, we 
apply orientational/rotational bias (OB) [17] on all hydrogen-bonding sites on a randomly 
selected chain. A combined orientational and configurational bias (CB) [18] half-chain 
regrowth represents the medium time-scales moves. For long-time scales, we implement 
an orientational and configurational bias full-chain regrowth at a randomly selected position 
for the first bead. For all cases, the configurational bias sampling for chain regowth is 
based purely on the bending potential. Additionally, the orientational bias moves consider 
stacking and pairing interactions. This particular decoupling choice allows us to achieve a 
significant reduction of the slowdown associated to the joined thermal implementation. 
Thus, the biased acceptance criteria include a composite Rosenbluth weight, which takes 
into account the chain stiffness during growth and all orientation-dependent interactions. 

 
For any given system, several different temperatures across the transition must be 

simulated until the complete melting curve is obtained. However, at low temperatures and 
dilute conditions, the anisotropic and short-ranged associating nature of the model 
interactions imposes severe restrictions on the phase-space sampling. This is a typical 
problem for molecules associating via hydrogen-bonding. There is an intrinsic competition 
between the low probability of placing the strands in favorable pairing configuration and 
then escaping from bound states once formed [19]. In order to overcome the high free 
energy barriers linked to low-temperature systems, we resort to the generalized or 
multicanonical ensemble technique called parallel tempering or replica exchange [20]. 
Therefore, in addition to the regular Metropolis [21], we also perform a random walk in 
temperature space.  In this scheme, a defined number of NVT replicas at different 
temperatures (with T1<T2<…<TP) are simulated in parallel. Configurational swaps or 
exchanges between neighboring replicas are proposed after a specified number of MC 
cycles [22]. Replica exchanges are accepted or rejected following the appropriate 
acceptance criteria. We use a fixed number of 16 replicas for all systems studied and the 
initial temperature distribution is set according to a geometric progression (as commonly 
used in the literature [19]).  

 
The thermal denaturation of DNA molecules exhibits a pronounced peak in the 

specific heat right at the transition temperature (similarly to helix-coil transitions for 
polypeptides). This phenomenon has a profound effect on the acceptance probability of 
parallel tempering moves, as has been described elsewhere [23]. The net effect is a 
bottleneck in the replica diffusivity across the temperature distribution; thus, significantly 
downgrading the relaxation benefits from swapping high- and low-temperature replicas. 
Hence, we apply a recently developed method aiming to overcome such problems [24, 25]. 
This algorithm systematically optimizes the temperature distribution by maximizing the 
round-trip rates of replicas between the extremal temperatures. For most cases analyzed, 
three or four iteration steps are necessary to achieve temperature-convergence and 
considerable improvement in the equilibration of the system. We use this method in 
combination with multi-histogram reweighting techniques [26, 27] to improve substantially 
the estimation of the peak of the specific heat and consequently the transition or melting 
temperature Tm. It should be noted that despite all the combined set of optimized Monte 
Carlo biased-trials and fast relaxation methods implemented, we are currently limited to 
simulate relatively short chains (oligomers up to 16 nucleotides). We find prohibiting longer 



equilibration CPU times for longer chains as the result of a noticeably drop of the 
acceptance probabilities (especially for both half- and full-chain regrowth moves) 
 
  

Results 
 

As a first case study, we simulated an idealized perfect-match hybridization model 
for DNA strands in solution. This model is intrinsically different to the one described above, 
but the Monte Carlo algorithm developed is flexible enough as to allow us consider this type 
of variation. Under this simplification, the chains are considered fully flexible, with no 
stacking interactions, and the monomer units no longer represent individual nucleotides but 
statistical segments, which bind to their complementary image on a neighboring strand. 
However, the model still preserves the directional nature of segment pairing. Each 
statistical monomer unit can be thought as a Kuhn segment. Therefore, according to the 
persistence length of single-stranded DNA, it may be comprised of approximately 6 to 20 
nucleotides [28] (depending on the sequence, degree of stacking and ionic strength). The 
perfect-match simplification has been a model subject of mean-field theories and simulation 
studies since the late 1950’s (see [29] and references therein). The underlying 
approximation has allowed to study the nature of the transition at the thermodynamic limit 
(or for very large values of N) for a single pair of DNA strands at infinite dilution. 
Nevertheless, very little attention has been paid to the case of solutions with finite 
concentration away from the thermodynamic limit of infinite chains. 

 
We simulated a dilute solution of DNA oligomer lattice chains, with lengths N = 4, 6, 

8, 10 and 12, on a cubic lattice with box of length L = 30 at constant monomer volume 
fraction φ= 0.0059. As expected, the chain length has a dramatic influence on the nature of 
the equilibria. In Fig. 1 we show the behavior obtained for the melting transition with respect 
to the natural order parameter for this phenomenon, i.e., the total fraction bonded bases 
<fHB>. It is clear that it follows the sigmoidal-like continuous transition typically observed for 
cooperative systems. This is somewhat expected since DNA denaturation (forward) and 
hybridization (reverse) processes are known to be a classical example of positive 
cooperativity (as well as many other classical cooperative processes like protein folding, 
ligand binding and polypeptide helix-coil transitions). As shown in Fig. 2, the melting 
temperature, defined as the temperature where the specific heat peaks (Cv/kB)max, 
increases with chain length, whereas the width of the transition becomes narrower for 
larger values of N. However, instead of observing a significant shift in the location of the 
melting curves, they exhibit a crossover behavior. Recent results of van Erp et. al. [30] 
using the Peyrard-Bishop-Dauxois (PBD) model, shows indeed the existence of this 
crossover-type behavior as the melting transition continuously approximates a sharp step 
function for large N. The characteristic increase and sharpening of the specific heat peak 
with increasing chain length suggests the possibility of a continuous phase transition 
(analogous to the behavior of the helix-coil transition for polypeptides [31]). As shown in the 
inset of Fig. 2, the maximum exhibits a scaling behavior with a nontrivial exponent 
(calculated from the fit), which gives further evidence for the continuous nature of the 
transition. We should also note in Fig. 1 that even when there is no favorable energy for 
stacking the bases on top of each other, the fraction base-stacking <fST> also experiences 
a transition with no sign of cooperativity. Simulation results shown for this case involved on 



average 3 to 4 rounds of feedback optimization of the temperature distributions for all chain 
lengths. 

 

 
Figure 1. Average fraction of bases bonded <fHB> and average fraction of bases stacked <fST> as function of 
the reduced temperature kBT/ε for different lattice chain lengths N. The lines represent interpolation from 
histogram reweighting. Statistical errors are smaller than the size of the symbols. 

B

 

 
Figure 2. Average specific heat <Cv/kB> as function of the reduced temperature kB BBT/ε for different lattice 
chain lengths N.  The lines represent interpolation from histogram reweighting. Statistical errors are typically 
smaller than the size of the symbols. The inset shows the scaling behavior of the specific heat peak (Cv/kB)  
with respect to the chain length N. 

B
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For the model at the nucleotide resolution level, we have performed a similar type 

of analysis in the multicanonical ensemble including the full set of base-pairing and base-
stacking matrices of interactions. The bending potential is also considered as described 
above to restrict the degree of stiffness of single-stranded DNA chains.  We first 
demonstrate its application on a sample system of oligomer strands with N=8 nucleotides 
units having the self-complementary sequence (ATCGCGAT)2. Simulations were performed 
on a cubic lattice with box length L = 30 at constant monomer volume fraction φ= 0.0059 
(M = 20 chains). In Fig. 3 we show the melting and specific heat curves for this system. As 
in the previous case, the progression of the fraction of bases bonded exhibits positive 
cooperativity whereas the stacking transition is noticeably broader and shows little if any 
cooperativity, in agreement with experimental observation [3].  In Fig. 4 we present four 
snapshots of equilibrium configurations (before and after the transition) at the 
corresponding temperatures indicated on the melting curve in Fig. 3a. This sequence of 
images provides a clear picture of the conformational transition coupled to the 
denaturation/hybridization thermodynamic transition. 

 
From the temperature corresponding to the (Cv/kB)max in Fig. 3b, an accurate 

estimate of the melting temperature was obtained for this sequence at the indicated 
conditions. At this temperature, the corresponding fraction of bases paired is <fHB>m = 
0.364. This value is significantly smaller than the commonly assumed value in the analysis 
of UV absorbance plots θ = 0.5 (inflection point of absorbance curve). However, this is not 
surprising, since the latter has no real thermodynamic meaning but is rather a convenient 
simplification for the van’t Hoff analysis of the experimental data. A test calculation on this 
same sequence using the DINAMelt server from Zuker et. al. [32] ([DNA] = 2·10-5 M and 
[Na+] = 1 M) shows that in fact <fHB> ≈ 0.30 at the Tm corresponding to the peak of the heat 
capacity plot. 

 
In this particular case, we have performed four rounds of feedback optimized 

parallel tempering to attain an appropriate temperature distribution. The iterative application 
of this algorithm to the data collected during the simulation allowed us to reduce 
considerably the error bars of the average specific heat (50 to 100% reduction 
approximately), especially close to the transition point where the method concentrates a 
larger number of temperatures. This is a clear indication of the bottleneck effect on the 
exchange of replicas related to the specific heat peak. A further analysis of the data shows 
the improvement in the acceptance probabilities of parallel tempering moves as well as the 
replica diffusivity between the first and last iterations (data not shown). This further confirms 
the achieved enhancement in the sampling of phase-space. We are also able to observe 
the direct impact on the refinement of the Tm estimation from the multi-histogram 
reweighting of the simulation data. 

 
 



 
Figure 3.  a) Average fraction of bases bonded <fHB> and average fraction of bases stacked <fST> as function 
of the reduced temperature kBT/ε for the thermal denaturation of the self-complementary sequence 
(ATCGCGAT)

B

2. b) Average specific heat <Cv/kBB> as function of the reduced temperature kBT/ε. Both plots 
show the precise location of the melting temperature T

B

m = 0.358 in reduced units. The lines represent 
interpolation from histogram reweighting. Statistical errors are smaller than the size of the symbols. 

 
Figure 4. Sample snapshots of equilibrium configurations distributed across the temperature range of the 
melting transition (as indicated in Fig. 3a). All snapshots correspond to the self-complementary sequence 
(ATCGCGAT)2. The monomer units colored red correspond to the hybridized bases, whereas the ones 
colored blue are the unpaired bases. The black pins indicate the direction of the binding and stacking sites. 



 
We evaluated the degree of specificity in the interactions of our model DNA chains 

in solution by studying the effect of base-pair mismatches on the thermal stability. We 
introduce errors in the self-complementary sequence already described above, 
(ATCGCGAT)2, such that we explicitly localize the mismatches at the end, center and 
middle base-pairs.  From the shifts in the melting curves (or specific heat peak), a 
significant lost of thermal stability is clearly observed for those two cases where the 
mismatch is located in the center bases or flanking the center base pairs. However, the 
case of end-mismatch has a negligible effect on the stability. This result corresponds 
directly to the fact that DNA oligomers denaturate by unzipping from the ends. This 
phenomenon is well known from oligomer helix-coil experiments [33], and has been 
perfectly reproduced by theoretical models base on statistical thermodynamic principles [34, 
35, 36]. The effect of unzipping at the ends has also an important kinetic rate contribution, 
since the dissociation of end base pairs responds to very fast relaxation times (of the order 
of ns to μs). In addition, the mechanism of association or hybridization from the center base 
pairs toward the ends has an enhanced equilibrium constant of propagation due to the 
chain symmetry and stiffness factors.  

 

 

 
Figure 5. Effect of mismatches on the thermal stability of the self-complementary sequence (ATCGCGAT)2. 
a) Average fraction of bases bonded <fHB> and b) Average specific heat <Cv/kB> as function of the reduced 
temperature k

B

BBT/ε for: c) non-mismatch (circles), d) end-mismatch (down-triangles), e) center-mismatch (up-
triangles) and f) middle-mismatch (squares) sequences. Monomer unit coloring is as described in Fig. 4. 

 
As in the previous case, we performed a sample calculation on the four sequences 

considered using the DINAMelt server [32] under the same solution conditions. The order 
and relative value of the melting temperatures obtained from this thermodynamic model are 
in agreement with the results presented in Fig. 5, i.e., Tm = 53.9°C (non-mismatch) ≈ Tm = 



53.6°C (end-mismatch) >> Tm = 16.6°C (center-mismatch) > Tm = -0.4°C (middle-mismatch). 
We also found that even when the center-mismatch sequence is more stable than the 
middle-mismatch one, the former shows lower cooperativity (wider melting range and lower 
specific heat peak, see Fig. 5b). Both observations can be explained from the higher 
degeneracy of the lowest energy configurations coming form the particular arrangement of 
the sequence with center-mismatch.  
 

The temperature dependence of the fraction of base-pairs in the system can be 
analyzed with a conventional van’t Hoff analysis (two-state model) to obtain the 
thermodynamic parameters associated to the melting transition [37]. A simple two-state 
model is commonly assumed in the analysis of melting data from spectroscopic methods 
(UV absorption or circular dichroism). For sequences much shorter than the persistence 
length of double-stranded DNA (about 50 base-pairs), this theoretical approximation is fairly 
reasonable even when the transition is not completely cooperative. In Fig. 6a, we show the 
effect of strand concentration on the melting transition. The shift observed in the melting 
temperatures and the increase of the width of the transition (decrease in cooperativity), are 
in complete agreement with experimental observations [38]. We have performed the same 
concentration dependence analysis on various self-complementary sequences of different 
lengths, including cases with dangling ends. As in previous cases, feedback optimized 
parallel tempering iterations were applied for every sequence at all concentrations studied. 
The estimation of the precise location of the melting temperatures derives from the multi-
histogram reweighting analysis of the specific heat curve.   

Excellent linear fits of Tm
-1 vs. log cT are obtained in all the cases studied (as shown 

in Fig. 6b). These results confirm the validity of the two-state model and provide accurate 
temperature-independent enthalpy and entropy parameters. The temperature-dependence 
of the transition ΔHm/kB and ΔSm/kB were also calculated for each sequence (see Figs. 6c 
and 6d). In general, we observe a good agreement of the thermodynamic parameters 
calculated from both methods (average enthalpies and entropies are calculated for 
comparison in the second case). From the slopes of the linear fits in Figs. 6c and 6d, we 
have also estimated the heat capacity change (ΔCp) associated with the transition. 
Following this analysis, we observed that the extent of the specific heat capacity effects, 
calculated as the ratio ΔCp/ΔSm, is lower than those observed in experiments [38]. 
Experimentally, this ratio is found to be between 2 and 4, whereas we obtained values in 
the range of 0 to 1. We argue that this disagreement may originate in the failure of the 
model parameters, i.e., base-pairing and base-stacking energies, to account correctly for 
solvation effects related to the double-helix stability in solution. However, it is important to 
note that thermodynamic parameters determined from spectroscopic methods exhibit 
discrepancies with respect to calorimetric measurements.  

 
 

 
 



 
Figure 6.  Thermodynamic analysis of the thermal denaturation transition. a) Average fraction of bases 
bonded <fHB> as function of temperature for different concentrations of the self-complementary sequence 
(ACGT)2; b) Linear fits of Tm

-1 vs. log cT for the sequences (ACGT)2, (GGCC)2, (AGGCC)2, (GGCCT)2 and 
(AGGCCT)2. c) Linear fits of ΔHm/kB vs B Tm for the same sequence on b); d) Linear fits of ΔSm/kBB vs Tm for the 
same sequences on b). 

 
Conclusion 

 
We presented a lattice simulation model to study the thermally-induced 

denaturation/hybridization transition of DNA chains in solution. The implementation of a 
multicanonical Monte Carlo approach based on the replica-exchange method, in 
combination with several biased trials and optimization algorithms, made it possible to 
bridge the broad time and length scales associated with this transition. The present study 
clearly indicates that the discretized model developed provides a simple but efficient and 
rather realistic way to understand the thermodynamic and conformational equilibrium of 
DNA oligomers in solution. Despite the fact that a quantitative match between experiments 
and the proposed simulation model is not feasible, a qualitative agreement was found with 
respect to different experimentally observed phenomena and thermodynamic-based 
prediction models. 
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