Improvement of methane steam reforming by using equilibrium shift with lithium silicate

Takehiko MURAMATSU, Kenji ESSAKI, Masahiro KATO

Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Japan E-mail: takehiko.muramatsu@toshiba.co.jp (T. MURAMATSU)

Abstract

Equilibrium shift is thought to be effective for promoting hydrogen (H₂) production by methane (CH₄) steam reforming. Our study clarified the effect of equilibrium shift by using a packed bed reactor with a mixture of reforming catalyst and CO₂ absorbent, resulting in the concentration of H₂ 94 vol% and that of CO 0.16 vol% at atmospheric pressure. In this experiment, lithium silicate (Li₄SiO₄), developed by Toshiba, was applied as the absorbent. This absorbent can emit CO₂ rapidly at considerably lower temperature than a well-known absorbent, calcium oxide (CaO). Li₄SiO₄ is, therefore, considered to be more suitable since required heat for regeneration should be less.

In this work, the effect of equilibrium shift at pressurized condition was studied and the increase in the effect of equilibrium shift was obtained. The concentration of H_2 increased to 96 vol%, and that of CO was kept at a similar value, 0.17 vol% at 300 kPa.

Keywords: Hydrogen, Methane steam reforming, Equilibrium shift, CO₂ absorbent, Lithium silicate.

Introduction

The major process for H_2 production is steam reforming of CH_4 , which is the main component of natural gas and town gas. Equation (1) represents CH_4 reformer's reaction.

$$CH_4 + H_2O \leftrightarrow 3H_2 + CO \tag{1}$$

The typical production gas from the reactor contains *ca.* 75 vol% H_2 and *ca.* 10 vol% carbon monoxide (CO). Then, this gas is fed to a water-gas shift reactor to reduce CO concentration. Equation (2) represents its reaction.

$$CO + H_2O \leftrightarrow H_2 + CO_2 \tag{2}$$

This part usually consists of two reactors, i.e., a high temperature water-gas shift reactor and a low temperature water-gas shift reactor. The effluent gas from a pair of shift reactors contains some vol% increased H₂ and 0.5-1 vol% CO. This gas is then fed to Pressure Swing Adsorption (PSA) for purification of H₂ in the case of industrial H₂ production or to a preferential oxidation for CO removal in the case of power generation by a fuel cell. Both methods reduce CO concentration to a value lower than 0.001 vol% (10 ppm).

In recent years, a new type of method using equilibrium shift for promoting H_2 production by CH_4 steam reforming has been proposed. This is based on Le Chatelier's principle that a reaction under an equilibrium limitation can be promoted by removing some of the products selectively from the reaction zone. By using this process, it is possible to obtain a larger amount of H_2 and a smaller amount of CO than equilibrium values with a

steam reforming reactor. Equation (3) represents total reaction of (1) and (2).

$$CH_4 + 2H_2O \leftrightarrow 4H_2 + CO_2 \tag{3}$$

As shown in this equation, two main products exist, i.e., H_2 and CO_2 . Therefore, in order to shift the equilibrium, there are two methods, i.e., H_2 removal and CO_2 removal. In the case of H_2 removal, a membrane reactor is used, which uses membranes generally made of palladium or palladium alloy to selectively remove H_2 from the reaction zone. Many studies have been reported on this method and increased conversion of CH_4 and very high concentration of H_2 were obtained with a reactor at lower temperature than in the conventional method. Moreover, a H_2 production system equipped with the membrane reactor has already been developed. The most important points for development of this system are decrease of energy loss due to pressurization for H_2 permeation and reduction of cost of membrane.

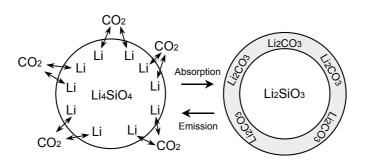
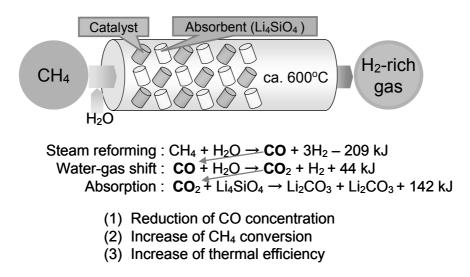
On the other hand, in the case of CO_2 removal, a packed bed reactor with a mixture of reforming catalyst and CO_2 absorbent is used to selectively remove CO_2 from the reaction zone. This kind of process is well known as the Sorption Enhanced Reaction Process and has been studied worldwide¹⁻³. Two effects were shown, namely, reduction of CO concentration due to promotion of water-gas shift reaction (Equation (2)) and increase of CH₄ conversion due to promotion of total reaction (Equation (3)). Moreover, these results were obtained at lower temperature than in the conventional method. In this case, energy loss due to pressurization for absorption is very small and cost of absorbent is relatively modest. Therefore, the important point is to decrease energy loss due to supply of heat for regeneration of absorbent, since CO_2 emission is an endothermic reaction. In most cases, calcium oxide (CaO) is used as CO_2 absorbent and CO_2 emission is generally examined at around 800°C in N₂. Equation (4) represents reversible reaction of CaO.

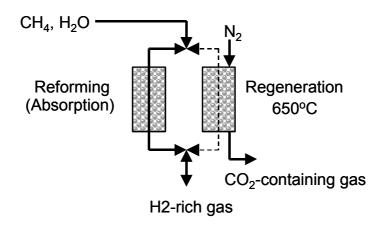
$$CaO + CO_2 \leftrightarrow CaCO_3 \tag{4}$$

This temperature for regeneration is almost the same as that for conventional steam reforming. Therefore, lowering it is required in order to build a H_2 production system with high overall efficiency.

A lithium silicate (Li₄SiO₄) absorbent has been developed as a new CO₂ absorbent at high temperatures⁴⁻⁷. It absorbs CO₂ at around 600°C and emits CO₂ at temperatures above 720°C, even in the case of pure CO₂ at 101 kPa. Equation (5) and Fig. 1 represent its reversible reaction for absorption and emission of CO₂.

$$Li_4SiO_4 + CO_2 \leftrightarrow Li_2SiO_3 + Li_2CO_3$$
 (5)


Fig. 1 Reaction model of CO₂ absorption and emission by Li₄SiO₄

The difference in equilibrium temperature between the two absorbents was calculated to be approximately 200°C on the basis of thermodynamic data⁸. In a gas which does not contain CO₂, the emission temperature should be reduced because of equilibrium. CO₂ emission of Li₄SiO₄ in N₂ after full absorption was examined and it completely finished within 0.5 hours at 650°C, which is about 150°C lower than the case of CaO⁹. Since Li₄SiO₄ has a considerably lower temperature for CO₂ emission than CaO absorbent does, the reaction between Li₄SiO₄ and CO₂ is easily reversible. Our previous experiments have clarified that a Li₄SiO₄ pellet has high reversibility, achieving a retention ratio of more than 80% for 20 cycles even in pure CO₂ at 850°C, which was stable after 5 cycles¹⁰. Therefore, Li₄SiO₄ is believed to be one of the best absorbents for equilibrium shifting. Figure 2 shows a model and expected effects of packed bed reactor with a mixture of reforming catalyst and Li₄SiO₄ absorbent.

Since CH_4 steam reforming is an endothermic reaction and CO_2 absorption is an exothermic reaction, thermal efficiency is also expected to be increased by performing these two reactions at the same time in a reactor. Moreover, by using two reactors as shown in Fig. 3, a continuous H_2 production system can be built.

Reforming and regeneration are changed every 30 minutes

Fig. 3 Schematic drawing of the continuous H₂ production system

The Effect of equilibrium shift on CH₄ steam reforming with Li₄SiO₄ was investigated at atmospheric pressure ¹¹ and resulted in the concentration of H₂ 93.7 vol% and that of CO 0.16 vol%. On the other hand, there are some cases, which require reforming under pressurized condition. For example, in a practical purified H₂ production system, pressurized H₂ gas from a reformer is required in order to connect to PSA. In the case of the reformer with equilibrium shift, raising pressure is expected to bring about two conflicting effects. It can promote CO₂ absorption to obtain larger effect of equilibrium shift. On the other hand, it can suppress CH₄ steam reforming reaction on the basis of equilibrium. In this work, the equilibrium shift effect for steam reforming of CH₄ by using Li₄SiO₄ at pressurized condition was studied.

Experimental

Commercially available steam reforming nickel catalyst was used, which was cylindrical pellet with diameter of 3 mm and length of 3 mm. The Li_4SiO_4 pellets used as CO_2 absorbent were spherical pellets with average grain size of 5 mm. The pellets consist mainly of lithium silicate, with some additives for promotion of CO_2 absorption and suppression of degradation during the absorption-emission cycles.

Figure 4 shows experimental apparatus for reforming. A mixture of steam reforming catalyst and CO_2 absorbent was placed in a metal reactor that has 21 mm inner diameter. Height of packed bed was around 320 mm. Packed beds of alumina balls were placed on and under this packed bed with each bed having a height of around 300 mm, in order to promote uniform gas diffusion and temperature in the bed of the mixture. For comparison, the test for the case of catalyst alone was also performed, using a mixture of catalyst and alumina ball, in which amount of catalyst and bed height of the mixture were the same as in the case of catalyst and absorbent. The reactor was heated by electric furnace. The feed gases were introduced from the top and removed from the bottom.

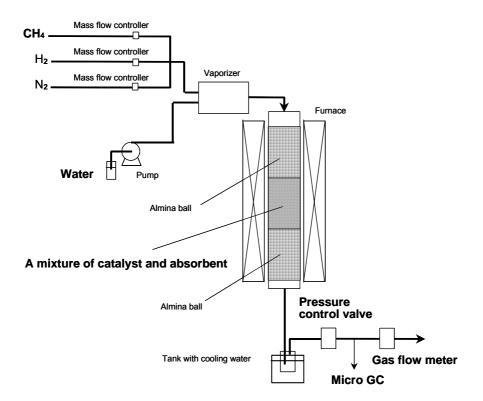
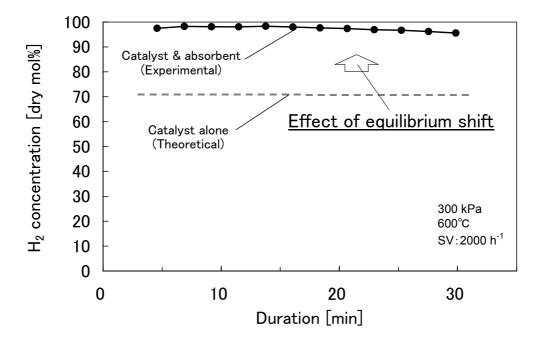


Fig. 4 Apparatus for steam reforming experiment


Initially, the reactor was heated to 600° C in a gas flow of N₂. Next, H₂ was mixed with N₂ to reduce the catalyst. After 30 minutes, H₂ was switched to steam and the temperature was kept at 600° C. Then, total pressure was increased and kept at 300 kPa with pressure control valve and N₂ was switched to CH₄ to start the steam reforming process. Steam reforming was continued for 30 minutes at 600° C. Space velocity, expressed as the catalyst volume to the feed gas flow rate, was 2000 h⁻¹.

Three conditions were decided based on a consideration of practical conditions. Firstly, the pellets are comparatively large, since in the case of packing small pellets or granules, pressure drop in the practical reactor increases and energy for introducing reactant gas increases. Secondly, steam/carbon ratio, which is equal to H_2O/CH_4 ratio in this case, was 4.0, which is similar to the value in an actual H_2 production system. Finally, no carrier gas such as nitrogen (N₂) was mixed with reactant gas, since it reduces H_2 concentration and is not considered to be used in a practical apparatus.

Results and Discussion

As a result of the test, CO_2 concentration was kept at 0.07 vol% or below for 30 minutes. This value is smaller than the equilibrium value, 14 vol%. Similarly, CO concentration was kept at 0.17 vol% or below. This is also smaller than the equilibrium value, 4.6 vol%. It is obvious that reduction of CO_2 due to absorption resulted in promotion of water-gas shift reaction (Equation (2)) by equilibrium shift to reduce CO concentration. Furthermore, it is possible to dispense with a CO-shift reactor and simplify PSA apparatus, as CO concentration was less than 0.5 vol%.

 H_2 concentration was kept at 95.6 vol%, which is higher than equilibrium value, 71 vol%, as shown in Fig. 5. The effect of equilibrium shift on promoting CH_4 steam reforming reaction (Equation (1)) was observed clearly. This high concentration of H_2 can cause increase of efficiency of PSA and overall efficiency at H_2 production. According to the above, a simple and efficient H_2 production system is expected to be established.

Fig. 5 H₂ concentration as a function of time

Conclusion

The effect of equilibrium shift for CH_4 steam reforming by using Li_4SiO_4 at pressurized condition, 300 kPa, was investigated with a view to expanding application. The concentration of H_2 was 96 vol%, and that of CO was 0.17 vol%. It was concluded that equilibrium shift reforming with Li_4SiO_4 can be performed under pressurized condition.

References

- 1. B. Balasubramanian, A. Lopez Ortiz, S. Kaytakoglu and D. P. Harrison (1999), "Hydrogen from methane in a single-step process," *Chem. Eng. Sci.*, **54**, 3543-3552.
- 2. J. R. Hufton, S. Mayorga and S. Sircar (1999), "Sorption-Enhanced Reaction Process for Hydrogen Production," *AIChE Journal*, **45**, 248-256.
- 3. Y. Kato, K. Ando and Y. Yoshizawa (2003), "Study on Regenerative Fuel Reformer for a Zero-Emission Vehicle System," *J. Chem. Eng. Jpn.*, **36**, 860-866.
- 4. M. Kato (2001), "Novel CO₂ Absorbent: Lithium Silicate," *J. Jpn. Inst. Energy*, **80**, 781-783.
- 5. M. Kato and K. Nakagawa (2001), "New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High Temperature CO₂ Absorbent," *J. Ceram. Soc. of Jpn.*, **109**, 911- 914.
- 6. M. Kato, S. Yoshikawa and K. Nakagawa (2002), "Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations," *J. Mater. Sci. Lett.*, **21**, 485-487.
- 7. K. Essaki, M. Kato and H. Uemoto (2005), "Influence of temperature and CO₂ concentration on the CO₂ absorption properties of lithium silicate pellets," *J. Mater. Sci*, **21**, 5017-5019.
- 8. I. Barin (1989), Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany.
- 9. K. Essaki and M. Kato (2006), to be published.
- 10. K. Essaki, T. Imada, Y. Kato, Y. Maezawa and M. Kato (2005), "Reproducibility of CO₂ Absorption and Emission for Lithium Silicate Pellets," Proceedings of Twenty-second Annual International Pittsburgh Coal Conference (CD-ROM), Pittsburgh, USA.
- 11. K. Essaki, T. Muramatsu and M. Kato (2006), "Effect of equilibrium-shift by using lithium silicate in steam reforming, " Proceedings of Sixteenth World Hydrogen Energy Conference (CD-ROM), Lyon, France.