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1. Introduction 

 

The lack of drinking water in many regions of the world has led to new development 
in desalination processes. There are different methods for desalinating water, such as 
distillation, electrodialysis, nanofiltration, and reverse osmosis. The efficiency of a reverse 
osmosis membrane desalination plants, which are most commonly used in water 
desalination technology, is often limited by membrane fouling. Both membrane life-time and 
separation performance (water flux and salt rejection) are adversely affected by several flux 
inhibiting boundary layer effects, especially concentration polarization, fouling and scaling. 
To advance the efficient operation of modern RO membrane desalination plants it is 
necessary to establish an effective approach to model plant operation and to identify 
deviations (as well as upsets) in process conditions due to fouling and mineral salt 
scaling.[1] Unfortunately, there are no first principle models available for predicting the 
development of fouling in full-scale RO plants. The major obstacles to developing such 
predictive models are the complexity of feed composition, the inability to realistically 
quantify the real-time variability of feed fouling propensity, lack of understanding of both the 
interplay of various fouling mechanism and the precise role of membrane surface properties 
and membrane interactions with various foulants and fouling precursors.[2] Using real-time 
measurements for various process variables, it should be possible to develop RO 
experimental models via Artificial Neural Networks (ANN) to describe the dynamics of full-
plant performance. Such models should help understand and establish the relationships 
between process conditions and the onset of fouling and scaling. Moreover, the ANN 
approach should enable one to develop soft sensors for early identification of membrane 
fouling. The above information would in turn enable the development of effective process 
control strategies. 

In the current study a neural network (NN) based RO model was developed for 
predicting the time evolution of permeate flux decline due to the occurrence of membrane 
fouling. Using real-time measurements of process variables as well as feed water quality 
from full-scale RO plants, a framework has been designed and NN models developed to 
evaluate in advance the onset of fouling with soft sensors. 



 

2. Experimental data and methodology 

 

2.1. Full-scale RO data 

The experimental data used for building predictive models, was provided by 
WaterEye Corporation for a two-stage brackish water desalination plant located at Port 
Hueneme, California, schematically presented in Figure 1. The data consisted of the real-
time evolution of several process variables, recorded every 10 minutes for about 3 months 
of operation, i.e., 9000 experimental data points. The monitored parameters included feed 
flow rate, conductivity, pressure, pH and temperature of the raw water feed; inter-stage 
pressure; flow rate, conductivity and pressure of the permeate; and flow rate, conductivity 
and pressure of the concentrate. The basic premise of the present approach was to utilize 
readily available process parameters in order to predict process upsets.[3] 

System conditions such as flow rates, pressures, temperature, and concentrations 
can vary during the operation of a full-scale RO plant and cause changes in permeate flow 
rate and salt passage. A diagnosis of such changes is cumbersome, due to the fact that 
they can also be attributed to the occurrence of fouling or can just be the result of changes 
in operating conditions. To effectively evaluate system performance, it is necessary to 
compare permeate flow and salt passage rates at the same conditions, converting the 
actual RO data to a set of reference (standard) conditions. In the present work, the utilized 
standardization procedure was the ASTM 4516-00 [4] method which is based on 
normalizing the permeate flow rate with respect to temperature, pressure and concentration 
(included in the osmotic pressure factor). The reference temperature was selected as 
25 ºC, while the reference pressure factor was calculated using the measurements 
corresponding to the first process monitoring point. 

The standardization of permeate flow rate can be expressed as, 
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where Qp is the permeate flow rate, Pf, Pc and Pp are the feed, concentrate and permeate 
pressures, respectively, Πfb, Πp are the feed-brine and permeate osmotic pressures, and 
TCF is the temperature correction factor, calculated as follows: 
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in which T is the absolute temperature in degrees K. 

The salt passage, defined as the ratio between the permeate and the feed-brine 
concentrations, was standardized as follows 
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where EPF is the average RO element permeate flow rate, and Cfb, Cf, Cp are the feed-
brine, feed and permeate concentrations, respectively. The feed-brine concentration was 
expressed as a log mean average, and calculated in terms of the recovery Y (the ratio 
between the permeate and the feed flows) according to 
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In equations (1) and (3), the sub index s refers to standard (reference) conditions, 
while sub index a refers to actual conditions. The osmotic pressure (kPa) was estimated 
from 
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where the concentrations are expressed as “equivalent of sodium chloride”, in mg/l. 

The compositions of the feed, permeate and concentrate streams are not measured 
in real-time in commercial RO plants. Therefore, one has to resort to conductivity 
measurements as surrogate for salt concentration. The common approach is to correlate 
conductivity with the total dissolved solids concentration (TDS) using sodium chloride as the 
correlating salt. Conductivity (µS/cm) - TDS (usually in units of mg/L) correlations can be 
obtained either from experimental measurements for the actual range of salt compositions 
of interest or based on thermodynamic multi-electrolyte calculations. In the present study 
the OLI Analyzer software [5], a multi-electrolyte thermodynamic process simulator was 
used to develop a range of conductivity – TDS correlations (using NaCl as the reference 
salt) for each of the process flows, resulting in the following TDS correlations. Thus, the 
equations used to calculate the equivalent NaCl concentrations are presented below: 

Permeate: ( )1.01690.3455 /NaClTDS S cmµ= ⋅ ; Feed-brine: ( )1.15670.1409 /NaClTDS S cmµ= ⋅  (6) 

Operational problems can be identified by plotting the time evolution of the 
normalized permeate flux and salt passage (see Figure 2), along with the evolution of 
pressure drop along the membrane channel (see Figure 3). When a significant change 
occurs in flux this is typically an indication of a deviation from the prescribed operational 
target. Process interruptions (e.g., membrane cleaning and/or replacement) can also be 
identified by discontinuities in the time evolution of the represented variables, especially 
when accompanied by large periods of missing data (e.g., no measurements are performed 
during the cleaning procedure) and from personal communication with either the plant 
operators or monitoring staff. For the present data set these occurred at operation times of 
328 hr, 832 hr, 976 hr, 1671 hr and 1928 hr, as indicated by the vertical dotted lines in 
Figures 2 and 3. 

 

2.2. Data preprocessing and analysis 

Model output was expressed as permeate flux, normalized with respect to the 
standardized flux taken immediately after a cleaning procedure (or membrane replacement) 
to facilitate the identification of critical operation conditions. In selecting the input of 



experimental data to the ANN model, it is important to select variables that are physically 
meaningful, independent, easy and inexpensive to measure and capable of being 
monitored in real-time. Accordingly, flow rate, conductivity, pressure, pH, temperature of the 
feed and the measurement time were chosen as inputs. The process time was divided into 
equal intervals, from 25 hr to 125 hr, to set-up the span for the forecasting operation period. 
In addition, the normalized flux at the beginning of each time period was selected as an 
input variable in order to capture large time-scale events, i.e., to enable capturing the long-
term memory of the RO system. 

Neural network models were built using the back-propagation algorithm to establish 
the relationships between the selected inputs and the target variable (critical process event, 
e.g., fouling). The data set was divided into three subsets. The first 4600 points, 
corresponding to the first three periods of operation, were selected to train the NN 
algorithm. The remaining points, corresponding to the last three periods of operation, were 
chosen for testing the models. Validation was carried out with 20% of the data in the 
training set, selected randomly. Validation results were used as a stopping criterion of the 
learning algorithm. As a result, approximately 40% of the entire data set was used for 
training the network, 10% for validation purposes and 50% for testing the experimental 
model.  

Various statistical approaches were applied for each time interval to determine the 
most suitable network architecture. The quality of the model was assessed with the 
application of the quality indicator defined by equation (7) over the training, validation, and 
test data sets.[6] 
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In equation (7) ˆ,  ,  i iy y y are the experimental, predicted, and average values, respectively. 
For the ideal case of a perfect model, plotting the predicted points versus the experimental 
ones should result in a straight line with the slope equal to unity which would also result in 
the Q2 index being unity. It is noted that Q2  varies between 0 and 1, with prediction’s quality 
increasing as Q2 approaches 1. 

 

3. Results 

 

Figure 4 summarizes the results of the statistical analysis followed to select the 
optimal network architecture relative to the model’s input variables configuration. Here the 
length of the time interval was varied from 25 hr to 125 hr and the number of neurons in the 
hidden layer ranged from 2 to 11. The results were combined into groups according to the 
network architecture. Each group contains five cases, the difference between them being 
the size of the periods used for dividing the time space. The dimension of each bar 
represents the Q2 index calculated for the testing set. 

As illustrated in Figure 4 the models ability to capture the changes in RO process 
performance generally increased as the time period decreased. Comparing different 
network architecture, it can be seen that in almost all the cases, the highest Q2 value is 



obtained when dividing the time space into 25 hr periods, while the lowest Q2 values are 
generally obtained when using the 125 hr time interval. Exceptions to this rule are the cases 
when using 2 or 7 neurons in the hidden layer. In general, when upon increasing the time 
interval the correlation index for the testing set decreased. The maximum absolute values 
for the Q2 correlation index were obtained for 5, 9 and 11 neurons in the hidden layer and 
for time interval of 25 hr. 

In order to find the optimal architecture of the NN, the data were analyzed using 
particular time intervals. When comparing the results for time intervals of 25 hr and 100 hr, 
the correlation index increased for 2 to 6 neurons in the hidden layer; subsequently, it 
decreased slowly with increasing number of hidden neurons. In these cases a bimodal 
graph was obtained with the maximum values of Q2 at 5 and 9 hidden neurons, 
respectively. For the time intervals of 50 hr and 75 hr, the performance of the correlation 
followed a similar behavior of increasing correlation (i.e., Q2) as the number of intermediate 
neurons increased from 2 to 6 but then remained nearly constant for higher values of 
hidden neurons. On the other hand, when the time space was divided into 125 hr periods, 
the maximum Q2 values were obtained when using 2 or 7 neurons in the hidden layer.  

Based on the above analysis, the optimal ANN model which yielded the highest 
quality index and simplest NN architecture was a 7:5:1 back-propagation neural network 
with a time interval of 25 hr. This model was selected for evaluating the RO process 
performance as illustrated in Figure 5. The experimental data points are represented with 
crosses and light color, while the predicted points are depicted as black full-dots. The 
vertical black lines denote the times of process shut down (e.g., for cleaning or changing 
the membrane modules). Figure 5a, presents the experimental training data points used for 
building the models, and the NN predictions for this operation period. Figure 5b, presents 
the forecast values of permeate flux by the ANN model and also the experimental values 
used for testing. As evident from both Figures 5a and 5b, the experimental results show a 
wide dispersion of permeate flux over the course of operation, whereas the predicted 
values of the ANN model presenting a slightly lower scatter, indicating that there is 
noticeable smoothing of the model forecasts. In all cases, the predicted values are in good 
agreement with the experimental values, not only for the first three periods of operation, 
that were utilized for the learning phase (Figure 5a), but also for the last three periods of 
operation, that were used solely for testing the prediction capability of the model (Figure 
5b). It is noted, however, that there are prediction outliers in both Figures 5a and 5b; but 
this is attributed to the major scatter of the monitored variables at the above times. 

 

4. Conclusions 

 

A neural network model was developed to describe the dynamics of a brackish water 
RO desalination system, using real experimental data from a full-scale RO pilot plant in Port 
Hueneme, California. Model training was accomplished using normalized data following the 
ASTM 4516-00 method. The spectrum of possible network architectures was scanned to 
arrive at the optimal model, using a number of numerical algorithms that considering the 
selection of model variables and resulting model performance. Long-term memory was 
incorporated into the model by dividing the time space into equals intervals and selecting 
the initial normalized permeate flux (i.e., at the beginning of each time period) as additional 
model input. The best results were obtained using a 25 hr time interval and a network 



architecture with 5 neurons in the hidden layer. Using this approach, reasonable permeate 
flow forecasting can be attained and thus provide the capability of inferring the occurrence 
of membrane fouling. 

The study revealed that the NN-RO models are able to successfully describe the RO 
process performance. Preliminary results are encouraging in demonstrating that the NN 
based RO models can be successfully used for interpolation, as well as for reasonable 
forecasting. Current work is ongoing to include the normalized salt passage in the overall 
model and extending the model to longer time range of process performance modeling. 
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Figure 1. Schematic of a two-stage RO process 
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Figure 2. Time evolution of the normalized salt passage and normalized permeate flow 
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Figure 3. Time evolution of the pressure drop along the membrane channel, for each one of the two 
stages and also for the overall process 
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Figure 4. Network structure and optimal time span analysis 
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Figure 5. Training and testing data predictions for the model built using a 25 hr time span, and the 
neural network architecture 7:5:1 
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