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Abstract

This contribution presents a new methodology for the optimization based
design of uncertain discrete time systems. Constructive nonlinear dynam-
ics methods have been developed for the optimization of dynamical sys-
tems under uncertainty over the past few years by the authors [2, 4–8]. The
present contribution deals with the extension of these methods to discrete
time systems.

1 Introduction

In a typical application, constructive nonlinear dynamics (CNLD) allow to take
parametric uncertainty with respect to stability properties into account in pro-
cess optimization [2, 4–8]. Originally, the development of these methods was
motivated by the need to impose constraints for robust stability on dynamical
systems modeled by systems of continuous time differential-algebraic equa-
tions (DAE systems). Several types of dynamical systems that arise in science
and engineering cannot be modeled as DAE systems, however. Here we ad-
dress the extension to discrete time systems, that is, models that consist of
algebraic and difference equations. Models of this type arise under several
circumstances. For one, processes exist that are intrinsically discrete in time.
Systems of difference equations also arise naturally when oscillating processes
are described with the aid of Poincaré mappings [3]. This type of description
is particularly useful when studying the stability and robustness properties of
periodically operated systems. A third important class of examples comprises
discrete time systems that result from sampling continuous time processes.
Since digital control systems use sampled data, this class of models is partic-
ularly important in the modeling for control.
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Figure 1: Nominal point of operation α(0) with stability boundary (thick line).
The critical point α(1) nearest to the nominal point is in the direction of the
normal vector r (dashed thick line). The distance between the nominal point
and the nearest critical point must be larger than the radius of the circle around
the nominal point.

2 Constructive Nonlinear Dynamics

The method presented in this contribution is based on bifurcation theory and
nonlinear programming. Bifurcation theory is employed to state formal descrip-
tions of critical points for nonlinear dynamical systems, for example, critical
points for stability [6]. Under mild mathematical conditions, critical points for
stability form critical manifolds. These critical stability manifolds can be thought
of as boundaries that separate those parts of the parameter space in which the
dynamical system is stable from those parts in which it is unstable. Beyond
stability boundaries, the concept of a critical manifold can be used to describe
a broad variety of points at which process behavior changes qualitatively, such
as feasibility boundaries, and various boundaries that characterize the dynamic
behavior of nonlinear systems [6].

Based on a formal description of critical manifolds from applied bifurcation
theory, systems of equations for normal vectors to the critical manifold can be
derived [6]. These normal vectors allow measuring the distance between a
candidate point of operation in the process parameter space and the critical
manifold. By imposing a lower bound on the distance to all critical manifolds,
robustness with respect to parametric uncertainty of the dynamical system is
guaranteed in the sense sketched in Fig. 1.

In Fig. 1, the critical boundary and the normal direction to it are sketched
as a bold full line and a bold dashed line, respectively. The shortest distance
between the nominal point at the center of the circle and the critical manifold
occurs along the dashed normal direction. By requiring this distance to be
at least as large as, or larger than, the radius of the circle, robustness can
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be guaranteed, since the critical boundary will not be crossed, regardless of
the actual values the parameters αi attain within the region of uncertainty rep-
resented by the box of side lengths ∆αi around the nominal point. Loosely
speaking, the optimization software pushes the robustness ball along any crit-
ical manifold. This way, robustness with respect to critical manifolds can be
taken into account in the optimization of dynamical systems in spite of para-
metric uncertainty. While the sketch in Fig. 1 is only two-dimensional, the idea
of measuring distance along normal vectors generalizes to arbitrary finite di-
mensional spaces of uncertain parameters.

The underlying mathematical foundations for discrete time systems are sim-
ilar to those used for continuous time systems with some fundamental differ-
ences, however. Most importantly, the underlying bifurcation theory is different
for the two system classes. Continuous time systems can, for example, experi-
ence a loss of stability due to two generic one parameter bifurcations (saddle-
node and Hopf), while in discrete time systems, three types of bifurcation points
can cause a loss of stability (Neimark-Sacker, flip or period doubling, and fold
bifurcation, for details see textbooks on bifurcation theory, e.g., [3]). In order
to characterize stability boundaries, three types of critical points therefore have
to be taken into account in discrete time systems as opposed to only two in
continuous time systems. To this end, normal vector systems can be derived
from systems of equations for critical manifolds of discrete time systems known
from numerical bifurcation theory [6]. Based on these normal vector systems,
constraints for parametric robustness with respect to stability boundaries can
be included in process optimization.

3 Applications

The use of the CNLD method is illustrated with a model for periodic harvesting
of a fish population with periodic reproduction events [1, 9]. This model serves
as an example for processes that operate on renewable resources. Renewable
resources naturally involve periodic processes. Crop production, for example,
proceeds as a cycle of seeding, growth, and harvesting much like the behavior
of the model treated here.

Figure 2 shows typical time series of a simulation with the model for the
periodically harvested fish population. These time series demonstrate that the
point in time in which harvesting occurs is critical for the stability of the system.
In this particular example, the stability boundary consists of period doubling
bifurcations [3]. When optimizing the process we are interested in finding those
values for the harvesting time and harvesting effort that are optimal with respect
to the profit from harvested fish while guaranteeing that the process does not
undergo period doubling in order to ensure stability and sustainability.

Figure 3a shows the profit Y as a function of the harvesting effort E and
the harvesting time T . For details on the cost function the reader is referred to
the literature [1, 9]. The thick red line marks the period doubling bifurcation of
the system. In order to ensure stability, the point of operation must be located
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Figure 2: Dynamic behavior of a model of a periodically harvested fish pop-
ulation. The dimensionless quantities x (dotted line) and y (continuous line)
are measures for the number of mature and young individuals in the population
[1, 9]. In (a) the period is one year. After changing the time at which harvesting
takes place, period doubling occurs (b). Cascades of period doublings can lead
to chaotic behavior (c).

to the left and below the stability boundary in Fig. 3a and b. The result of the
optimization with the CNLD constraints is shown in Fig. 3b. The back off from
the critical boundary ensures robust stability of the optimal point of operation.
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Figure 3: (a) Profit Y as a function of harvesting time T and harvesting effort E.
The red line marks the stability boundary. (b) Stability boundary in the (E, T )
plane and result of the optimization with CNLD constraints.
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4 Conclusion

We demonstrated that the concept of constructive nonlinear dynamics that had
previously been developed by the authors for the robust optimization of continu-
ous time processes with dynamic constraints, can be extended to the important
class of discrete time systems. Towards this end we developed extended sys-
tems of equations for normal vectors on period doubling bifurcations. These
normal vectors were successfully employed to optimize a model of the periodic
harvesting of a fish population.
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