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Abstract 
Porous media are heterogeneous systems. The microstructures of the pore spaces 

influence their transport properties. A quantitative geometrical characterization of the pore 
space is crucial for accurate prediction of porous media transport. Thus, a 3D simulation of 
porous media was developed based on randomly packed glass beads. Unconsolidated porous 
media are reconstructed through Monte Carlo gravitational particle packing simulation. A 
mathematical morphology based three-dimensional image processing algorithm is developed 
to characterize the pore space in the simulated porous media. This algorithm calculates the 
bulk porosity, average particle contact numbers, and specific surface area of the porous 
media. It also generates the pore-throat network with details of pore size distribution, location, 
and throat tortuosity distribution. The simulation results are validated by statistical comparison 
with the bulk porosity and pore size distribution obtained from x-ray micro-tomographic images 
of randomly packed glass beads. Simulation of porous media, given a specific size distribution 
of constituent particles, followed by pore-space characterization provides a powerful tool for 
predicting transport processes. 
 

Introduction 
Transport in porous media is encountered in numerous physical systems from water 

resources management to industrial processes of varying length scales. It is a complex 
phenomenon.1 Many efforts have been made to develop continuum mechanics based models 
to describe porous media transport.2 These mathematical models often tried to correlate the 
transport behavior of a specific porous medium with their bulk porosity.3 Sometimes, in these 
models, effective permeability of the porous medium is represented as a function of porosity as 
well as an average tortuosity, in order to match the experimental data.4 These descriptions of 
porous media flow are not purely mechanistic models, but based on semi-empirical 
relationships among capillary pressure, saturation level, and relative permeability, obtained 
through controlled experiments.5 These models do not account for the topography of the 
microstructure in the porous medium. But, the transport of fluids and solutes in porous media is 
a function of its geometry and topological characteristics. The microscale phenomena 
happening in the pore-scale level translates very well into the macro-scale behavior of a 
porous structure.6 Hence, pore-network based modeling of various properties of porous media 
is a powerful method to generate realistic prediction of macroscopic behavior. Early attempts 
at pore network modeling describe porous media transport based on capillary tubes.7 These 
models attempted to explain the permeability without accounting for the interconnectivity 
among the pore channels. More recently the concept of 2D and 3D networks to describe the 
pore-space topography has been introduced.8,9 2D pore networks have limited application 
since most porous media involve 3D flow and hence the the connectivity between pores can 
not usually be adequately defined in 2D.10 The existing 3D network models in the literature are 
not realistic, those are generated based on certain assumptions regarding the pore and throat 
size distribution.8 



Thus, there is a need to develop a realistic 3D pore network model, which shows more 
promise to a realistic prediction of porous media transport. Pore network models can be 
generated using indirect or direct methods. In indirect method, an equivalent network is 
produced based on distributions of major pore-space structures, pore body and pore throat, 
and their positional correlations.11 In contrast, the direct method, extracts the pore-throat 
network from the pore space directly using 3D image. The direct method requires no 
assumption related to the topological positions or dimensions. In order to directly map the pore 
network, a 3D data representing the pore-space, with enough resolution, is essential. Many 
attempts have been made to generate this dataset using high resolution non-invasive three-
dimensional imaging techniques like laser scanning confocal microscopy12, x-ray 
microtomography13, etc. There are three major limitations of this approach. First, one is 
restricted to investigating only those porous media, of which one already has samples of. 
Thus, one can not use this approach for virtual product design. Second, the pore-space data 
set resolution is limited by the instrument capability that is used to acquire the 3D data. The 
third limitation is the contrast in the dataset. The edges of the pore-space, i.e. the grain 
boundary in the instrument-generated images will not be absolute. This sharpness of the 
edges will depend on how the sample material interferes with the instrument signal. The 
imperfection in obtaining the correct edges can introduce serious errors in the pore network 
extracted.14 All these limitations are avoided in this work by extracting the pore network from a 
digitally generated consolidated porous media through computer simulation and mathematical 
morphology based image processing. 

A random packing of particles represents an unconsolidated porous media. Various 
methods have been used by different researchers to generate a random packing of particles. 
Some of them are: sequential addition15, ballistic drop with mechanical interaction 
calculation16, region growing17, and mechanical contraction18. Simple rules of sequential 
addition, where particles are added at random positions as long as they do not share spaces 
with each other, can generate random particle packs, but the packing tend to be fairly loose.19 
The reason for this is while placing a new particle it stops moving as soon as it hits another 
and do not slide along other particles boundary, which is more realistic. Ballistic drop method 
of random particle packing simulation utilizes calculations of mechanical forces each time a 
falling particle encounters another on its path. Although this method follows the mechanics of 
the process realistically and very accurately, many detailed calculations in each step of the 
movement for a huge number of particles become extremely demanding on the computing 
power. Thus, this method of simulation tends to be much slower, and to generate a random 
packing with fairly large numbers of particles, a very high amount of computing time is 
required. Region growing method of random particle packing is used in simulating aggregated 
powder particles. It starts with one central particle and attaches particles of random size at 
random available locations. This method is not representative of randomly droppping particles 
into a container randomly to generate an unconsolidated porous media.17 The mechanical 
contraction method of random particle packing is motivated by simulation of amorphous 
packing and is based on the idea of density quenching a system, which undergoes no thermal 
fluctuations. Three-dimensional Monte Carlo simulation under gravity is a method of random 
particle packing, which closely resembles random gravitational dropping of particles and at the 
same time computationally less demanding. Hence this method was selected to generate the 
porous media model in this work. 

Since, the porous media models are constructed through computer simulations, the 
resolution of the pore-space was limited only by the available memory (RAM) and processor 



speed of the computer used. This model enabled perfect binarization of 3D pore-space images 
without any error from edge or boundary detection.  

A 3D image processing algorithm was developed for this work to map the pore-throat 
network. Skeletonization of the 3D pore-space was the first step in mapping of the pore-throat 
network. This conversion of the 3D image into the pore-throat network has a wide variety of 
applications and has been an active area of research for many decades.20 Many researchers 
have tried different sequential, parallel, as well as non-iterative  thinning techniques towards 
the same goal; Hamilton-Jacobi21, local flux driven extraction22, three-dimensional template 
based exclusion rule23, medial axis extraction24, are to name a few. These algorithms, in spite 
of being effective in finding the skeleton in specific kind of structural features, fail to correct 
centerline in other types of shape features.25,26,27 Especially when the structure is as complex 
as pore-space it becomes very challenging to come up with a single algorithm that will 
converge to a perfect skeleton in an unsupervised manner. A morphological thinning algorithm 
is developed in this work which thins the pore-space with same flux vector from all directions 
while preserving the continuity. This algorithm also generated the bulk porosity, co-ordination 
number, specific surface area. Using the distance-transform principle; pore size distribution, 
and average tortuosity of the pore-space are also calculated in an automated manner by this 
algorithm. All these values directly calculated from the three-dimensional morphology of the 
pore-space are more realistic input parameters for pore network based modeling. Thus porous 
media based virtual product design, aiming at a specific transport behavior, becomes much 
faster and complete. 
 

Methods 
 
Reconstruction Simulation 

The three-dimensional Monte Carlo simulation algorithm in this work tries to simulate 
simultaneous random dropping of spherical particles, of a specific size distribution, into a 
container. As these particles finally take up mutually most stable positions, we obtain an 
unconsolidated porous media. The algorithm is built upon some assumptions, which are 
consistent with this final goal: (a) the particles are spherical in shape, (b) particle radii belong 
to a user specified distribution, (c) particles are rigid, (d) the container walls are rigid, (e) 
particles cannot move against the gravity i.e. upwards during their random motion, (f) 
downward and sidewise movement vectors of the particles are random. The algorithm starts 
with assignment of the particle number, its radius distribution shape, mean and width. It also 
prompts the user to provide the dimension of the container. Initially all the particles are allotted 
their center positions uniformly distributed in the container inner space. No location is accepted 
if it does not obey the assumptions (c) and (d), and that particle is reassigned another 
permissible location. During each iteration of the simulation the particles are moved sidewise 
and downward. The movement direction and magnitude are obtained by a normally distributed 
random number generation between -1 and +1(in case of z-direction movement between -1 
and 0), followed by multiplication with a factor commensurate with the length-scale of the 
system. As each iteration is completed, the total potential energy of the particle system with 
respect to the bottom floor of the container is calculated and stored in an array. With progress 
of the iterations the particle assembly gradually settles down towards the bottom of the 
container in a random fashion. The total potential energy of the system drops faster during 
initial few iterations and then gradually the rate decreases. As the slope of this total potential 
time-course becomes very close to zero, the iteration stops, and the final location of the 
particle centers and corresponding radii are recorded in proper matrices. A flow diagram of the 



algorithm is given in figure 1. An example of ‘movement of particles’ during a Monte Carlo 
packing simulation is shown in figure 2. The time-course of the corresponding normalized total 
potential energy of the system as the simulation progresses is given in figure 3. A three-
dimensional matrix is created based on the particle location and radii information. In this matrix 
the voxels occupied by the particles are assigned 0, and its complement set is assigned 1. 
This matrix now represents the pore-space. By adding all the voxels belonging to the pore 
space followed by division with the total number of voxels in the container gives the bulk 
porosity of the reconstructed porous medium. 

In order to validate the simulation algorithm, a packed bed of spherical glass beads 
was obtained and a three-dimensional image is acquired using x-ray microtomography. During 
this measurement, x-ray passed through the glass bead pack.The attenuation in intensity of 
the x-ray as it passes through glass and air are distinctly different. Utilizing this contrast in 
attenuation coefficient of the transmitted x-ray a map of the glass bead pack was obtained. 
The x-ray microtomography system obtained multiple x-ray “shadow” transmission images of 
the packed bed from different angular views, as it rotates on a high precision stage. From 
these shadow images, cross-sectional images of the glass bead pack are reconstructed by a 
modified Feldkamp cone-beam algorithm, finally creating a complete three-dimensional 
representation of the internal microstructure. This image data was segmented in to pore space 
and grains based on intensity difference, and the bulk porosity was calculated. The glass 
beads from the same lot are spread over a light microscope with bottom light configuration, 
and two-dimensional images are acquired. Images were obtained for approximately 1000 
beads. An example image is shown in figure 5. An algorithm was developed to automate the 
process of finding the beads in those images, calculating their radii, and storing them in a data 
array. This array was then used to determine the shape, mean, and width of the distribution of 
the bead sizes. The distribution obtained for 500µ diameter beads were shown in figure 6. This 
algorithm was validated by manually measuring 200 beads under the same microscope. This 
distribution was used as one of the input parameters while running the Monte Carlo packing 
simulation in triplicate. The bulk porosity, and pore size distributions were then obtained from 
the simulated packing and x-ray microtomography data, and compared statistically.  
 



 
Figure 1: Monte Carlo gravitational particle packing simulation algorithm 
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Figure 3: Normalized total potential energy of the particle system as the simulation progresses 
 
 
 
 
 
 
 

Figure 2: Example of movement of particles undergoing Monte Carlo gravitational 
simulation 
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Figure 4: An example of acquired microscopic images of glass beads 
 
 
 
 
 

 
Figure 5: Distribution of glass bead sizes through automated microscopic image analysis 
 
Image Processing 

The image processing algorithm starts with the pore-space binarized three-
dimensional data set. Each iteration in the algorithm executes the following set of actions.  
(i) The outer-most thinnest surface of the pore-space is determined. This is accomplished by 
finding those voxels which belong to the pore space but have at least one grain voxel in its 26-



neighborhood. This set of voxel is stored in another matrix; their elements are summed, and 
divided by the total number of voxels belonging to the porous medium in order to calculate the 
specific surface area of the system. 
(ii) Each of these voxels are taken one by one, eliminated and checked in their 5 voxel x 5 
voxel x 5 voxel vicinity if a new three-dimensional object is created because of this elimination. 
If the outcome is negative then the voxel is designated eligible for elimination.  
(iii) All the eligible voxel in the current are iteration are removed from the pore-space data set.  
(iv) The resulting thinned three-dimensional data set is stored in a buffer matrix and the original 
matrix becomes available to the next iteration.  
(v) The current buffer matrix is compared for voxel-to-voxel correlation with the previous one. If 
the outcome is negative then the algorithm continues to the next iteration step. 
As a result of following these rules the algorithm stops on its own as it generates the single 
voxel thin connected skeleton of the pore-space. A flow chart explaining the skeletonization 
algorithm is given in figure 6. Next, a Euclidean distance transform is done on the complement 
of the original pore-space matrix, and this three-dimensional map is multiplied voxel by voxel to 
the binary skeleton matrix. On the skeleton matrix, the voxels are found which has three or 
more neighbors which belong to the same skeleton. These voxels are designated as the pore 
centers. The distance-transform values of these voxels correspond to the radius of the pore, 
which it is the center of. These calculated values of the radii are stored in an array, which 
translates into the pore size distribution of the reconstructed porous medium. A spherical 
template based generation of the pores is done based on their respective maximal possible 
radii. The minimum of the distance-transform map values of all the voxels, belonging to the 
part of the skeleton that joins two of these pore centers, is the critical radius of that particular 
throat. The total number of voxels making the current throat is divided by the linear distance 
between two connected pore centers and is saved as the tortuosity of the corresponding 
throat. 

In order to validate this algorithm, first, a cubic lattice is formed. One sphere is placed 
at each corner of the cubes. The radii of the spheres are made equal to one half of the sides of 
the cubes. The arrangement of the spheres is shown in figure 7(a). Now the pore-space not 
occupied by these spheres is obtained, and passed on to the skeletonization algorithm. The 
skeleton thus generated is shown in figure 7(b). The algorithm generated pores had all equal 
radii of the magnitude of 0.83 times the radii of the spheres, which corresponds very well  
with the analytically calculated value of 0.8284. The skeleton generated in this case also 
corresponded well with the expected map of it i.e. another cubic lattice. 
 

Results and Discussions 
 

Unconsolidated porous media were reconstructed through the Monte Carlo simulation 
for five normally distributed particle sizes. Volume rendering of a sample particle packing and 
pore-space thus created are shown in figures 8(a) and (b), respectively. The particles used 
had same mean but different variances. The bulk porosity and average number of contacts 
were calculated through image processing. The effect of particle size distribution width on 
these computed properties are shown in figures 9, and 10. 

 



 
Figure 6: Flow chart of three-dimensional skeletonization algorithm to extract pore network 
from simulated unconsolidated porous media 
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Figure 7: (a) Cubic lattice arrangement of simulated bead pack(on the left); (b) three-
dimensional skeleton extracted using current algorithm(on the right) 
 
 
 
 
 
 
 
 
 

 
Figure 8: (a) Volume rendering of a Monte Carlo simulated reconstructed porous medium (on 
the left); (b) Volume rendering of the pore-space (on the right) 



10-2 10-1 100 101 102
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

Particle Diameter Variance

C
om

pu
te

d 
B
ul

k 
P
or

os
ity

 
 
Figure 9: Influence of particle size distribution width on bulk porosity of the reconstructed 
porous media 
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Figure 10: Influence of particle size distribution width on average coordination number of the 
reconstructed porous media 
 



 
Figure 11: Three-dimensional rendering of a sample extracted pore-network 
 

Size distribution of glass beads of mean diameter 250µ and 500µ are obtained through 
microscopic image acquisition, automated image analysis (as described in the methods 
section). These distribution parameters are used as input values in the Monte Carlo simulation 
algorithm. The pore space data matrices from these reconstructed porous media were then run 
through the skeletonization algorithm to extract the pore network. Three-dimensional rendering 
of a sample pore network is shown in figure 11. The pore size distribution, and average 
tortuosity of the system were computed using the image processing steps described in the 
methods section. The pore size distributions of those two systems are shown in figures 12, and 
13. The average tortuosity of the systems with 250µ, and 500µ mean diameters were 3.97 and 
2.04, respectively. 

triplicate simulated packs were 0.35, 0.41, and 0.37. A t-test28 comparison (p<0.05) 
found that the porosity of real glass bead pack and the simulated pack are statistically 
equivalent. The pore size distribution was extracted from the x-ray microtomography 3D image 
using the image processing algorithms developed in this work. The extracted pore size 
distribution is shown in figure 15. A quantitative comparison between the PSDs obtained from 
simulated pack and the x-ray micrCT image is done by Kolmogorov-Smirnov statistics test. 
Kolmogorov-Smirnov test statistic is the maximum of absolute differences between two 
cumulative distribution functions of the distributions being compared29. The value of 
Kolmogorov-Smirnov statistic in this case is 0.011 which is less than 0.085865, the table value 
of w1-α quantile with the level of significance (α) as 0.05. Hence, we can accept the null 
hypothesis i.e. the two PSDs can be considered equivalent. 
Although the packing simulation results agree well with the three-dimensional imaging data 
there are some limitations to this method. The current algorithm can pack particles of spherical 
shape only. The particles and the container walls are strictly assumed to be hard, so no 
deformation is allowed. But in real life, many instances can be found where all the constituent 
particles of a porous material are neither spherical nor perfectly hard. The non-spherical 
particle situations could be handled by considering geometric constraints related to other 
shapes while calculating the interaction energy in each iteration of the simulation. The soft 
boundary condition can be realized by defining a permissible shift window for the container 



boundary. But these approaches are not attempted in this work, because the simulation was 
compared with real glass beads packed in a plastic cuvette both of which had hard boundaries. 
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Figure 12: Pore size distribution of 250µ mean diameter particles extracted through 
skeletonization algorithm applied to simulated packing 
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Figure 13: Pore size distribution of 500µ mean diameter particles extracted through 
skeletonization algorithm applied to simulated packing 



The three-dimensional image of a random packing of glass beads of 500µ diameter as 
obtained by x-ray microtomography for validation of the packing simulation algorithm is shown 
in figure 4. The bulk porosity was measured as 0.38. The calculated bulk porosities for the  
 

 
 
Figure 14: Volume rendering of x-ray microtomographic image of random packing of glass 
beads 
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Figure 15: Pore size distribution extracted from x-ray microtomographic image of glass bead 
pack of 500µ mean diameter 
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Figure 16: Comparison of normalized cumulative probability distribution from the PSD obtained 
through x-ray microtomographic image and packing simulation. This is used for the calculation 
of Kolmogorov-Smirnov statistics. 
 

Conclusions 
 

Porous media is encountered in numerous fields of interest ranging from water 
resource engineering to process industries. Hence their prediction of transport properties is 
crucial. Network based modeling of various porous media transport phenomena does not 
depend on empirically obtained parameters, and accounts for microstructural influence on 
macroscopic behavior. Hence proper extraction of the pore network becomes instrumental in 
obtaining realistic prediction. Mapping of the network based on pore-space topology essentially 
needs the three-dimensional pore-space data set. To obtain this data set through an imaging 
instrument, the porous media must be created first. Thus only those porous structures which 
can be created in the laboratory can be utilized in the network based prediction model. But, by 
means of our current work, a wide range of porous media can be reconstructed, followed by 
their detailed morphological analysis extracting microstructural parameters relevant to 
transport modeling. Using this powerful method, virtual experimentation can be done trying out 
a wide array of possible structures before a very few of them are short-listed for desired 
transport properties and validated through laboratory experiments. It will not only save time, 
money and other resources needed in carrying out unnecessary laboratory experiments in the 
early stages of product development, but also will provide a systematic approach to new 
porous media based product development. 
 



Acknowledgements 
 

We acknowledge the help of Tom Dufresne of Health Care Research Center, Proctor 
& Gamble Co., Cincinnati, OH in obtaining three-dimensional x-ray microtomographic image of 
the random bead pack. We also acknowledge the help of Dr J.D. Miller of University of Utah, 
Salt Lake City, UT in developing the Monte Carlo simulation. 
 
References 
 

1. Bear J, Buchlin J-M. Modeling and applications of transport phenomena in porous 
media (1st edition). Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991. 

2. Wannanen KM, Litchfield JB, Okos MR. Classification of drying models for porous 
solids. Drying Technology. 1993;11:1-17. 

3. Whitaker S. Simultaneous heat, mass and momentum transfer in porous media: a 
theory of drying. Advances in Heat Transfer. 1977;13:217-255. 

4. Geankoplis CJ. Transport processes and unit operations (3rd edition). New Jersey: 
Prentice Hall P T R, 1993. 

5. Gilliland ER, Sherwood TK. The drying of solids VI: diffusion equations for the period of 
constant drying rate. Ind. Eng. Chem. 1933;25:1134-1141. 

6. Masmoudi W, Prat M, Bories S. Drying: percolation theory or continuum approach - 
some experimental evidences. In: Quiantard M, Todorovic M. Heat and Mass Transfer 
in Porous Media. New York: Elsevier, 1992:817-28.  

7. Rogers JA, Kaviany M. Funicular and evaporative-front regimes in convective drying of 
granular beds. Int. J. Heat Mass Transfer. 1992;35:469-478. 

8. Laurindo JB, Prat M. Numerical and experimental network study of evaporation in 
capillary porous media. Phase distributions. Chem. Eng. Sci. 1996;51:5171-85. 

9. Neimark AV. Multiscale percolation systems. Sov. Phys. JETP.1989;69:786–91. 
10. Broadbent SR, Hammersley JM. The mathematics of percolation in networks. Proc. 

Cambridge Philosophical Society. 1957;53:629-35 
11. Prat M, Bouleux F. Drying of capillary porous media with stabilized front in two-

dimensions. Phys. Rev. E. 1999;60:5647-56. 
12. Fredrich JT. 3D imaging of porous media using laser scanning confocal microscopy with 

application to microscale transport processes. Phys. and Chem. of the Earth. 
1999;24:551-61. 

13. Lindquist WB, Venkatarangan A. Investigating 3D geometry of porous media from high 
resolution images. Phys. and Chem. of the Earth. 1999;25:593-99. 

14. Oh W, Lindquist WB. Image thresholding by indicator Kriging. IEEE Transactions on 
Pattern Analysis and Machine Intelligence. 1999;21:590-601. 

15. Sherwood JD. Packing of spheroids in three-dimensional space by random sequential 
addition. J. Phys. A: Math. Gen. 1997;30:L839-L43. 

16. Coelho D, Thovert J-F, Adler PM. Geometrical and transport properties of random 
packing of spheres and aspherical particles. Phys. Rev. E. 1997;55:1959-78. 

17. Mort P, Riman RE. Determination of homogeneity scale in ordered and partially-ordered 
mixtures. Powder Technology. 1995;82:94-104. 

18. Williams SR, Philipse AP. Random packings of spheres and spherocylinders simulated 
by mechanical contraction. Phys. Rev. E. 2003;67:051301-1-9. 

19. Cheng YF, Guo SJ, Lai HY. Dynamic simulation of random packing of spherical 
particles. Powder Technology. 2000;107:123-30. 



20. Lam L, Lee S-W. Thinning methodologies – a comprehensive survey. IEEE transaction 
on pattern analysis and machine intelligence. 1992;14:869-85. 

21. Siddiqi K, Bouix S. Hamilton-Jacobi skeleton. Int. J. of Computer Vision. 2002;48:215-
31. 

22. Bouix S, Siddiqi K, Tannenbaum. Flux driven automatic centerline extraction. Medical 
Image Analysis. 2005;9:209-21. 

23. Ma CM, Sonka M. A fully parallel 3D thinning algorithm and its applications. Computer 
Vision and Image Understanding. 1996;64:420-33. 

24. Lee T-C, Kashyap RL, Chu C-N. Building skeleton models via 3-D medial surface/axis 
thinning algorithms. 1994;56:462-78. 

25. Wu QJ, Bourland JD. Three-dimensional skeletonization for computer-assisted 
treatment planning in radiosurgery. 2000;24:243-51. 

26. Hafford KJ, Preston KJ. Three-dimensional skeletonization of elongated solids. 
Computer Vision, Graphics, and Image Processing. 1984;27:78-91. 

27. Maddah M, Soltanian-Zadeh H, Afzali-Kusha A, Shahrokni A, Zhang ZG. Three-
dimensional analysis of complex branching vessels in confocal microscopy images. 
Computerized Medical Imaging and Graphics. 2005;29:487-98. 

28. NIST/SEMATECH e-handbook of statistical methods, 
http://www.itl.nist.gov/div898/handbook/   

29. Conover WJ. Practical Nonparametric Statistics(1st edition). New York: Wiley, 1998. 
 


