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Introduction 
 

It is known that the addition of soluble polymer to colloidal dispersions, even in small amounts, 
has a significant effect on transport properties of colloids1. However the effect of colloids on the 
dynamics of polymer has not been investigated. Transport properties of macromolecules in confined 
geometries, especially in narrow channels, offer many technological applications in processes such as 
membrane filtration and gel electrophoresis. A good starting point to obtain quantitative results for the 
translational diffusion rate of the center of mass of a polymer in solution is the Kirkwood formula. We 
extend the treatment of Harden and Doi2 where no colloid is in the solution to the case where polymer is 
immersed in a colloidal solution, focusing on the diffusion of a linear flexible chain in a narrow 
cylindrical channel. 
 

Polymer dynamics in theta and good solvents 
 

Consider a single polymer in a colloidal solution confined in a cylindrical narrow channel. 
We assume the physical picture of a diffusing polymer in which the dominant mode of transport is cage 
diffusion3: the polymer tries to escape from the dynamic cage created by its two neighboring colloids. 
The size of colloids, which are modeled as hard spheres of radius a, is such that they cannot pass each 
other and the radius of the channel is smaller than the radius of gyration of the polymer. Thus, the 
polymer essentially adopts a cigar-shaped conformation in the confining channel (de Gennes regime)4.  

The Kirkwood formula corresponds to the diffusion coefficient obtained from the initial decay 
rate in intensity of the scattered light in scattering experiments5. It therefore gives the short-time 
diffusion coefficient. For short times, the polymer is still trapped inside the cage and just rattles between 
the colloids. During this time, the colloids, which are much larger than the monomers, have hardly 
moved. Thus we will neglect their influence on the hydrodynamic motion of monomers. However, the 
two neighboring colloids act as barriers against the motion of the chain. As a first approximation, the 
associated barrier potential for the two colloids, located a distance L apart, may be described by a 
combination of delta functions 

)]2/()2/([)( LzLzSzU ++−= δδ , 
where we assume the channel is in the z-direction and the S is the strength of the barrier which depends 
on the size of colloids and the diameter of the cylinder. Furthermore, the polymer can be regarded as a 
Gaussian chain in which the excluded volume effects are taken into account depending on the quality of 
the solvent. 

In the narrow capillary limit, were the ground-state dominance approximation is valid, the 
diffusion coefficient is given by2 
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for ideal chains in Θ solvents, and is given by  
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for swollen chains in good solvents.  
In the above expressions, N is the number of monomers; η is the viscosity of the solvent; R is the 

radius of the channel; J0 and J1 are Bessel functions of the first kind of zero and first order, respectively, 
and 01α  is the first zero of J0. gtheta and ggood are the one-dimensional structure factors of the chain in 
theta and good solvent conditions, respectively. 

Moreover, 
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To proceed further, knowledge of the structure factors is called for. When the chain is subject to 
an external potential U(z), an approximate expression for the pair correlation function is6  
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where c is the average linear monomer concentration and g0(z) is the pair correlation function in the 
absence of the external potential. Taking the Fourier transform of this equation using the given barrier 
potential leads to the following relation for the structure factor 

)]2/cos(1)[()( 0 kLkgkg α−= , with TkcS B/=α  ( 10 ≤≤ α ). 
This relation gives the diffusion coefficient for a particular configuration of the two neighboring 

colloids separated by a distance L which then has to be averaged over all possible distances using the 
nearest-neighbor distribution function of colloids, H(L). Fortunately, H(L) for pure colloids modeled as 
hard spheres (hard rods) in one dimension, is exactly known7, and the presence of a single polymer in 
the solution will not significantly change this distribution  

)]1/(exp[)( −−= σκκ LLH , 
where )1/(2 cc ηηκ −= , with cη  the colloids packing fraction and a2=σ  the diameter of the colloids. 
 

Results and discussion 
 

Figs.1 and 2 show the dramatic reduction of the normalized diffusion coefficient upon increasing 
the colloids concentration for different values of the barrier strength. The decay rate is much larger for 
dilute colloidal solutions compared to highly concentrated solutions. 

Next, the variation of D with polymerization index N is explored and compared with previous 
results2 when there is no colloid in the system (α = 0). D exhibits a power-law behavior for large N and 
scales as ν−ND ~ . The growth of the scaling exponent υ with increasing α (or S) is illustrated in Fig.3. It 
suggests that the diffusion coefficient becomes more sensitive to the number of monomers as the height 
of the barrier is increased. The details of the growth depend on the model potential. Nevertheless, setting 
α equal to 1 yields an upper bound for υ, that is, υ≤1 for theta conditions and υ≤2 for good solvents. 

The major advantage of this simple model is that it has only one free parameter which controls 
the strength of the confinement created by the colloids. However, it also has some limitations. For 
instance, the scaling of D with R cannot be examined due to the lack of information about how S 
changes with respect to R. 
 



 
Fig.1: Normalized diffusion coefficient at theta conditions for different barrier strengths. 

 
                    

 
Fig.2: Normalized diffusion coefficient in a good solvent for different barrier strengths. 

 
 

 
 



 
Fig.3: Scaling exponent υ as a function of barrier strength α in theta and good solvents. 
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