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In this work, the suitability of several techniques for monitoring a reverse-flow reactor system
are studied. Reverse reactor systems are operated by periodically reversing the direction of the
flow inside the reactor [1],[2]. One benefit of a reverse-flow configuration is that, for exothermic
reactions, the system exhibit a heat-trap effect [3] where the temperature profile across the
reactor achieves a maximum near the centre of the reactor. This enhanced temperature profile
allows the combustion of lean feed streams that could require pre-heating for combustion in a
traditional, one-way reactor system.

The reverse-flow reactor system under study in this work is used for combustion of low
concentration methane streams and has been modeled in the literature [3]. The data used for this
work was obtained from the CANMET Energy Technology Centre at Varennes, Quebec Canada.
Data from the reactor system under three distinct operating conditions will be studied. The
three conditions are distinguished by the frequency at which the feed direction is switched and
the concentration of methane in the feed stream. Table 1 lists the switch time and concentration
associated with each condition. Plots of temperature versus time for selected thermocouples
are shown in Figure 1. As can be seen from Figure 1, the switching flow direction induces
temperature oscillations in the reactor. Furthermore, the period of the temperature oscillations
is related to the period of switching. Less clear, however is the relationship between the feed
concentration and the reactor temperature. As can be seen from Figure 1, the general trend of the
mean temperature in the reactor is flat when operating at a feed concentration of 0.3% methane.
However, when operating at a feed concentration of 0.7% methane, the averaged temperature
increases with time.

Condition Number Switch Period (s) Methane Concentration mole %
1 300 0.3
2 100 0.3
3 100 0.7

Table 1: List of Reactor Operating Conditions

Traditional fault-detection schemes that rely on instantaneous process measurements [4] may
fail to detect faults in the reverse flow reactor system due to the inherit temperature oscillations.
Consider, for example, the problem of trying to determine if the reactor temperature is excessive
or increasing rapidly. One cannot use any single instantaneous measurement of the system
because, as shown in Figure 1, the temperature at any point in the reactor oscillates, and may
therefore, at any single point in time, be much lower or much higher than the mean. Note that
even if one was to implement an time-averaging scheme for each measurement, the period of
averaging would have to depend on the operating condition of the reactor. A fast-switching
operation would require fast averaging, while a slow-switching operation would require a slow
averaging scheme.
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Figure 1: Temperature Plots for Selected Thermocouples.

To determine whether a standard latent-variable model is useful in monitoring the reactor
system a PCA model of the reactor data using three latent variables was developed. Note that
for the PCA analysis, as well as all other analysis done in this work the models developed are
designed to explain 80% of the process variance unless otherwise stated. Figure 2 shows the sum
of square error for the PCA model prediction. The PCA model is able to detect the transition
from the first to the second operating condition (a change in the reactor switch time), but is not
able to detect the transition from the second to the third operating condition (a change in the
feed concentration).

Figure 2: SSE for PCA Model; the dashed line corresponds to the 95th percentile of residuals.

The score plots of the PCA model is shown in Figure 3. Note that the score plots cannot be
easily divided into regions associated with the different operating conditions. That is, the score
plots shown in Figure 3 cannot be used to identify the discrete state of the system.

One alternative to traditional PCA modeling and fault-detection techniques is the use of
spectral PCA. In this approach, the power spectra of the data is computed using fast Fourier
transform and analyzed using PCA. A plot of the projection of the process data, in the frequency
domain on the principal components is shown in Figure 4 . As can be seen from Figure 4
(note that only two principal components were identified) there is indeed a change in the key
frequencies of the system from Condition 1 to Condition 2. Furthermore, the data associated
with each Condition appears to cluster in different locations in the principal component space.
This technique is therefore superior to traditional PCA in its ability to categorize process data.
However, this technique is limited as a real-time monitoring tool because the frequency data
required to monitor the process cannot be collected in real time. As a result, the model prediction
errors, for example, cannot be collected in real-time.

Recently, a hybrid identification procedure has been proposed [5] that is suitable for identifi-
cation of linear relationships in systems with several discrete states. The general idea behind this

2



Figure 3: Score Plots of 3-Component PCA Model: ◦: Data from Condition 1; ×: Data from
Condition 2; �: Data from Condition 3

hybrid identification procedure is as follows. Let the system variables be zi with i = 1, 2, . . . , n.
Any single linear discrete state is described by a constraint on the system variables given by∑n

i=1 λizi = 0, with λi ∈ R. Letting Λ = [λ1, λ2, . . . , λn], this sum can be written as Λz = 0.
For systems with m discrete states, we can write the linear constraint for each discrete state as
Λjz = 0 for the jth discrete state with j = 1, 2, . . . ,m. The hybrid system is described by the
hybrid decoupling polynomial P =

∏m
j=1 Λjz. This product can be expanded and expressed as

the sum P =
∑M

i=1 z̃Λ̃ where z̃ and Λ̃ are vectors made up of monomials in z and Λ, respectively,

of degree m, and M =

(
m + n− 1

m

)
. Note that for each sampling time P = 0 for a noise-less

system. For a stochastic system, one obtains an estimate for Λ̃ by finding the value of Λ̃ that
minimizes P .

Our approach is to use the hybrid decoupling polynomial to monitor the reactor system. The
number of measured variables in this case is n = 30. With three discrete states (m = 3) the

number of elements in Λ̃ is M =

(
m + n− 1

m

)
= 4960, that is, more than the number of

observations available to us. To overcome this difficulty, we use traditional PCA to reduce the
number of model variables from 30 to three. A value of three for the reduced variables were
chosen because three variables are sufficient to explain 80% of the variance in the original data.

After reducing the number of variables, we apply the hybrid identification procedure to the
variables in the latent space. The degree of the hybrid decoupling polynomial was chosen as three
because that is the number different conditions under which the reactor system was analyzed. A
plot of the model data in the principal component space is shown in Figure 5. As can be seen
from Figure 5, the hybrid model is able to separate the reactor data into areas populated by
data corresponding to Conditions 1, 2 and 3 only slightly better than the traditional PCA model.

3



Figure 4: Score Plots of 2-Component Spectral PCA Model: ◦: Data from Condition 1; ×: Data
from Condition 2; �: Data from Condition 3

However, as shown in Figure 6, the hybrid approach allows us to monitor the reactor system by
plotting the SSE as a function of time. This approach, therefore, is able to detect changes that
would not normally be detected using a PCA-based approach for the system under study.

Figure 5: Score Plots of 2-Component Hybrid Polynomial Model: ×: Data from Condition 2; �:
Data from Condition 3

In this work we consider three approaches for monitoring the operation of a reverse-flow
reactor system. This system is challenging to monitor due to the lack of a steady state point.
In addition, the dominant feature of data obtained from the reactor system is temperature
oscillations which make monitoring and fault detection difficult. For this system traditional
PCA techniques for monitoring may fail to identify a change of operating conditions. Frequency-
based approaches can also be used to monitor the reactor system. However, these approaches
may be difficult to implement in real-time. Using a hybrid-system monitoring approach it is
possible to correctly identify changes in operating conditions in the reactor system. However, for
systems with many measurements, it is necessary to reduce the number of variables in the data
set before applying the hybrid identification algorithm.
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Figure 6: SSE Plot for the Hybrid Polynomial Model
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