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Background

The ongoing research effort presented here aims at finding the most time-effective solver
for reactive flow problems with strong volumetric expansion, and strong feedback effects of
the reactions on the flow. This solver has to perform steady-state simulations of important
chemical processes involving multiphase flow and detailed kinetics with minimal total CPU
time requirements. This total CPU time requirement is the product of CPU time per iteration
and the number of iterations required to obtain convergence.

The focus is on the Fluid Catalytic Cracking process (Das et al. 2003, Quintana-
Solórzano et al. 2005), as a benchmark to assess the performance of the steady-state solvers
that are being compared. Fluid Catalytic Cracking (or FCC) is a major conversion process in
the petrochemical industry, used extensively to convert heavy crude oil fractions to lighter,
commercially more valuable, transport fuels. It is a prime example of a multiphase process,
involving three aggregation states. It is characterized by high feed concentrations and impor-
tant density variations, a feature which sets it apart from combustion, where the heat effect,
rather than the volumetric expansion effect of the reactions is of major concern for the numer-
ical scheme.

The FCC process was selected for several reasons. It is a numerically challenging
process. The density variations induced by the reactions are found to have an important
impact on the robustness of the numerical scheme. Furthermore, the numerical behaviour
when solving this process is sufficiently different from problems in combustion, an area of
active research, to warrant separate attention.

Finding the least time-consuming way to solve the equations of reactive flow is the
long-term target of many researchers. In this presentation, the results obtained using two dif-
ferent solvers will be discussed. Both solvers have been implemented in a computer program
solving the one-dimensional equations of reactive gas–solid flow, for ease of development.
However, the concept and the results are readily generalized to higher dimensions, and the
use of one space dimension is not an intrinsic limitation of the solvers presented here. The
first solver is a fully coupled solver in line with traditional Navier-Stokes solvers for compress-
ible, nonreactive flow. The second solver is a generalization of the post-processing approach,
frequently used for the a posteriori imposition of chemical reactions on a previously deter-
mined flow field.

Fully coupled solver

In the fully coupled solver, the equations for reactive flow are all treated alike. This means
that the Navier-Stokes equations and the continuity equations are discretized and integrated



simultaneously. After discretization of the original partial differential equations, a set of cou-
pled linear algebraic equations is obtained. Each of these algebraic equations expresses the
changes in the state variables due to convection, diffusion, reaction and other source terms.
Because the state variables are linked to one another, a matrix equation has to be solved to
obtain the changes for the individual state variables. Obviously there are as many equations
as there are state variables. Hence, the coefficient matrix has size n × n, n representing the
number of state variables. It is to be noted that the computational work for solving a matrix
equation with an n × n matrix is at least of the order n2. This implies that the computational
work is more than proportional to the number of equations. The latter fact will grow in impor-
tance as the number of reactive components increases.

Simulations of the FCC process with the fully coupled solver indicate that it is a stable
and robust solver. By using an implicit treatment of the source terms, the solver copes well
with the numerical stiffness caused by the chemical reactions. The number of iterations to
reach convergence is nearly identical to that of a solver for nonreactive flow.

The main advantage of the fully coupled solver is that it is a logical extension of
a Navier-Stokes equation solver as the additional continuity equations are discretized and
integrated in exactly the same way as the Navier-Stokes equations. The solver copes well
with the density variations. Its most serious disadvantage is that, even for a moderate number
of reactive components, the coefficient matrix quickly becomes large. Since the computational
work involved in solving the matrix equation is at least proportional to n2, it follows that any
reduction in the size of this matrix is rewarded with a more-than-proportional decrease in
execution time. This is the major motivation for the algebraically decoupled solver discussed
next.

Algebraically decoupled solver

The algebraically decoupled solver differs from the fully coupled solver, in that the Navier-
Stokes equations and the continuity equations are decoupled at the algebraic level. Consider
the coefficient matrix of the fully coupled solver. If certain elements of the coefficient matrix
are set to zero, the equations decouple algebraically. The matrix equation with the modified
coefficient matrix can be split in two matrix equations, each with a smaller coefficient matrix.
Evidently, the total number of algebraic equations remains the same. However, the compu-
tational work involved is reduced significantly. Please note that cancelling elements is only
allowed inside the coefficient matrix governing the time derivative term, which vanishes at
steady state. It is never applied to the other terms, to avoid changing the steady state itself.
In other words, only the convergence behaviour may be modified, but the consistency of the
differential equations and the numerical implementation should always be satisfied.

The algebraically decoupled solver is a generalization of the post-processing ap-
proach which is often used for the ‘superposition’ of chemical reactions on a previously deter-
mined flow field. Often, a flow field in a reactor is determined using a CFD package, excluding
chemical reactions, producing density, pressure, temperature and velocity fields. The latter
are then used as an input to another package that calculates the chemical reactions. Pro-
vided the reactions do not influence the flow field significantly, this chemical post-processing
is the last stage of a reactive flow simulation. The generalization consists in transferring con-
trol from the flow part to the reaction part and vice versa, not once, but several times. The
post-processing approach is a limiting case of this, consisting of one pass for the Navier-
Stokes equations, followed by one pass for the continuity equations.

Simulations of the FCC process with the algebraically decoupled solver are not found
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Figure 1: Convergence history of the coupled solver. Steady state reached for the overall
flow+reaction problem.

to be successful. As discussed below, many more iterations are needed to reach convergence
than the fully coupled solver needs. The experience gained with the fully coupled solver is
now of value to understand the cause. Closer investigation of the elements of the coefficient
matrix which are assumed to be zero in the algebraically decoupled solver, reveals that some
of these elements in fact do not have negligible values. It is exactly this which causes the
limited performance of the algebraically decoupled solver for the FCC process. However, the
values of these elements can be quantified, and linked to operating conditions and/or physical
properties. Hence, it is possible to derive an objective criterion which can be calculated a
priori, to determine if the application of the algebraically decoupled solver can be succesful.

The advantage of the algebraically decoupled solver is that it is relatively straightfor-
ward from a conceptual and technical point of view, compared to other methods of decoupling.
Since the continuity equations are of the same nature as the Navier-Stokes equations, viz.
of convection–diffusion–source type, the discretization and integration need not be changed.
Furthermore, the same boundary conditions as in the fully coupled solver can be applied. A
disadvantage is that the algebraically decoupled solver loses its competitive edge over the
fully coupled solver if the number of reactive components is many times larger than the num-
ber of flow equations. Another disadvantage is that this decoupled solver is not unconditionally
stable.

CPU time & convergence results

The final aim is the reduction of the total CPU time needed for a simulation. The total CPU
time is determined almost exclusively by the computational work of the linear algebra routine.
Since the computational load of the linear algebra routine is (at least) of the order n2, the
theoretical gain in CPU time per iteration by solving two systems of half size instead of one full
system, is therefore: 2 × (n/2)2 = n2/2, or 50%. In practice, when the coupled solver is run
for n iterations, and the decoupled solver is run for n flow iterations and n reaction iterations,
the decoupled solver is only 10% faster than the coupled solver. This rather low figure can
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Figure 2: Convergence history of the algebraically decoupled solver, with six cycles: one
flow cycle (long) alternating with one reaction cycle (short), repeated three times. Steady
state reached in every of the six cycles. Note that steady state for the overall flow+reaction
problem is not achieved, even after six cycles.

be explained partly by the increased overhead of the decoupled solver for managing the
solution of two different equation blocks. More important though, is the observation that the
reaction equations converge much faster than the flow equations; typically 10 times faster.
Therefore the coupled solver should be compared with a decoupled solver running only n +
n/10 iterations, resulting in a speed-up of more than 60% using the decoupled solver. The
potential for speed-up is even higher considering that the reaction equations were solved
with a CFL number of only .2, due to instabilities linked to changes in the density field. The
flow equations were solved with a CFL number of 1. Note that the CFL numbers used are still
orders of magnitude larger than the CFL number of a solver with only one single iteration per
flow cycle and per reaction cycle (Baudrez et al., 2005).

However, the total CPU time is also influenced by the number of iterations needed for
convergence. A plot of the residu as a function of the number of iterations is plotted for the
coupled solver in Figure 1, and for the algebraically decoupled solver in Figure 2. The cou-
pled solver has only one cycle, during which the combined flow–reaction problem is solved
until a steady-state solution is obtained (which is detected by checking whether the norm of
the residu has reached a sufficiently low value). The algebraically decoupled solver performs
several alternating flow/reaction cycles. Only six cycles, alternating between flow and reac-
tion, are presented. It is seen that the first cycle (flow equations without reaction equations)
converges almost as fast as the coupled solver. The presence or absence of reaction source
terms does not have a significant influence on the convergence rate. When a steady-state
solution is reached for the flow equations, the reaction equations are solved, using the con-
verged flow fields as an initial guess. It is seen that the reaction equations indeed converge
very fast to a steady-state solution.

The important point to note is that, when the composition obtained from the steady-
state solution of the reaction equations, is substituted back into the flow equations, the state



does no longer satisfy the flow equations. This is visible as a peak, i.e. a high initial residu of
the flow equations in the third cycle. Overall, the maximum values of these peaks is seen to
decrease, although only slightly over the six cycles presented in Figure 2.

The explanation is that the density of the mixture is very sensitive to the composition.
During the flow cycle, the composition is assumed to be constant in time, and the flow field is
determined using a fixed composition. This composition is only updated in the reaction equa-
tions. When control is returned to the flow cycle, density is updated with the new composition.
However, the density is very important for the convective fluxes, and the flow field does not
satisfy the conservation equations any more. Convergence needs to be re-established using
this new density field. Conversely, when a steady-state solution is obtained for the flow field,
and control is transfered to the reaction block, the fluxes change as well, and convergence
needs to be re-established for the composition. This explains the high peaks in the conver-
gence history, every time a switch from flow to reaction cycle, or reaction to flow cycle, takes
place. The height of the peaks is more pronounced if the changes caused by the flow or the
reaction block to the density field are larger. In FCC, physical properties and operating con-
ditions are such that this is the case, and many more flow and reaction cycles than in the
coupled solver are needed to obtain convergence for flow and reaction simultaneously.

Conclusions

In this work, a fully coupled and an algebraically decoupled solver for reactive two-phase
flow with strong volumetric expansion have been presented. The fully coupled solver is stable
and robust. Its convergence is not deteriorated by the volumetric expansion effect due to
the cracking reactions. However, although the number of iterations is low, it is expensive in
terms of the computational cost per iteration. The algebraically decoupled solver, although
the computational cost per iteration is much lower, needs many more iterations. The major
reason for this is the two-way coupling between flow and reactions through the density. This
coupling can be ‘visualized’ and quantified, and linked to physical properties and/or operating
conditions, quantities which are known a priori. The post-processing approach is a limiting
case of this algebraically decoupled solver. Hence, this conclusion is more generally useful
for assessing the feasibility of chemical post-processing on given flow fields, where the effect
of composition on the density is important.

References

Baudrez E., De Wilde J., Vierendeels J., Heynderickx G. and Marin G.B. (2005). Full versus
partial coupling of flow and reaction in the simulation of catalytic cracking riser flow. In
Proceedings of the 7th World Congress of Chemical Engineering. Institution of Chemical
Engineers

Das A.K., Baudrez E., Marin G.B. and Heynderickx G.J. (2003). Three-dimensional simulation
of a fluid catalytic cracking riser reactor. Industrial and Engineering Chemistry Research,
42(12):2602–2617
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