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Abstract 
The selection of appropriate operating conditions for bioprocessing is 

complex due to the large number of interacting stages and variables. Models for 
each processing stage require significant numbers of variables and thus the whole 
process model will consist of a large number of variables overall. Interactions 
typically exist within a bioprocess meaning that the operation of one unit or the 
value of a variable may adversely effect the operation of subsequent units. It is 
therefore necessary to consider the process as a whole – selecting the optimal 
conditions for individual units will not yield optimal performance for the process. In 
addition to these complexities, bioprocesses also operate under tight regulation 
and it is necessary to demonstrate that performance is satisfactory over the likely 
operating range. Therefore, tools to analyse the sensitivities of the variables and to 
identify the key variables will assist bioprocess design and be of significant utility. 

 
Conventional approaches for the analysis of variable sensitivities are 

inadequate. Since they only consider one variable at a time and are unable to 
consider interactions between variables. We propose the use of global sensitivity 
analysis to determine the level of importance of each variable and their 
interactions. Global sensitivity analyses enable the effects of variable and 
parameter changes to be determined over the range of likely operation, but more 
importantly it determines the impact of all variables simultaneously rather than 
individually, which is necessary where interactions between variables are 
expected. Quantitative sensitivity indices for each variable and their interactions 
can be quantified which are used to determine the relative importance of each 
variable. Once key variables have been determined, the designer may focus on the 
most significant variable subset and investigate the effects of any process 
interactions. 

 
In this paper a case study is presented which illustrates the utility of the 

application of global sensitivity analysis to bioprocess operation. The case study 
investigates a two-stage sequence of a fermentation and subsequent centrifugal 
harvest and studies how the variable sensitivities change as the fermentation yield 
increases. The impact of such changes on the operation of the process is then 
considered. It is found as the cell density increases the importance of the 
fermentation stage increases. Thus at higher cell densities control of the 
fermentation will have a larger impact on the overall performance than the 
subsequent harvest centrifuge. 
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Introduction 
 
The selection of appropriate operating conditions for bioprocesses is a 

complex task due to significant interactions which occur between processing 
stages (Siddiqi et al, 1995, and Clarkson et al, 1996). In addition, models to 
describe the unit operations which comprise the process, typically have many 
variables each of which may interact. Thus the operation of unit operations must 
be considered within the context of the whole process model – selection of unit 
operating conditions considered in isolation will not result in optimal operation for 
the process as a whole, for example the operation of upstream units may 
negatively impact upon units downstream. As well as these operational 
considerations, it is important to note that biopharmaceuticals are produced within 
a tight regulatory framework, which requires the demonstration of consistent robust 
operation of the process within defined operating limits. This is known as process 
validation. Therefore, the ability to identify key variables within a bioprocess will 
assist significantly with both the determination of satisfactory operation and with 
the demonstration of robust operation, since knowledge about which variables 
contribute most to the model output will enable engineers to focus efforts on these 
areas. 

 
Traditional approaches to variable sensitivity analysis are inadequate as 

they investigate the impact of variables one at a time which by its very nature 
precludes the investigation of the impact of variable interactions. Global sensitivity 
analysis however investigates the impact of a number variables over a defined 
range and therefore this methodology is suitable for the analysis of a complex 
systems such as bioprocesses. The ability to carry out the analysis over a set 
range is particularly relevant since bioprocesses will be validated over defined 
ranges and knowledge from models about which variables are most significant will 
assist with this task by reducing its complexity. Previous work has demonstrated 
the applicability of global sensitivity analysis for determining further data and 
information on the significance of bioprocess variables (King et al, 2005). 

 
In this paper a case study is presented which illustrates the application of 

global sensitivity analysis to bioprocess operation. The case study investigates a 
two-stage sequence of a fermentation and subsequent centrifugal harvest, and 
studies how the variable sensitivities change as the fermentation biomass yield 
increases. The impact of such changes on process operation is then considered. 

 
 

Global Sensitivity Analysis 
 

Sensitivity analysis techniques quantify how the output from a model 
depends upon each of its input variables. Global sensitivity, in particular, attempts 
to determine the relative effect of variables on the model outputs considering all 
variables simultaneously. This is in contrast to local sensitivity analysis, which 
typically determines the rate of change of model output with respect to individual 
model variables. Global sensitivity analysis therefore determines sensitivities of a 
multidimensional system as opposed to local sensitivity analysis which finds a 



gradient at the operating point with respect to a single variable. In addition, global 
sensitivity techniques may be used to determine the strength of interactions 
between model variables. 

 
There are a number of global sensitivity analysis techniques including FAST 

(Saltelli and Bolado, 1998) and Sobol’s method; in this paper Sobol’s method is 
used due to the ease of formulation for the complex equations involved in 
bioprocesses. Sobol’s method is based on the ANOVA (Analysis of Variances) 
representation of functions. This representation decomposes the model function 
under study into a summation, assuming that the model may be represented by a 
function of n variables, e.g  f(x1, ..., xn)  : 
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Figure 1: This diagram shows the concepts involved in global sensitivity analysis of a 
system with two variables, x1 and x2, which control a function f. The surface at the top 
of the figure represents the response of the function f(x1 x2) over the operating range. 
The operating range is represented by the rectangular region at the base of the 
graph. The volume above the dashed line represents the total change in performance 
over the operating range due to changes in all variables and this change in 
performance may be represented by the equation shown for Δy which is based on the 
ANOVA concept (see equation 1).  Global sensitivity analysis determines the 
contribution from each term in this equation and hence from each variable or 
combination of variables. 

 
Figure 1 shows a two-dimensional example of the concepts involved in Sobol’s 
global sensitivity analysis. In particular, the figure indicates the operating range 
investigated, the resulting range of model response and the significance of the 
ANOVA representation, i.e. Δy represents the change in model output over the 
response surface shown, with a contribution due to each variable and combination 
of variables. Global sensitivity analysis determines the significance of the 
contribution of each variable or combination, using the ANOVA representation and 
advanced mathematics techniques (Sobol, 2001). Previous work details our 
application of Sobol’s method to bioprocess models and in this work we use the 
same implementation (King et al, 2005). 
 



The following section describes a case study which investigates changes in 
variable sensitivities which occur with modifications in process operating 
conditions, demonstrating their impact over a sequence of two units. This enables 
the engineer to determine appropriate operating strategies and equipment. 
 
 

Case Study 
 
Centrifuge Models 
 
 In this paper, a previously developed centrifuge model (Clarkson et al, 
1996) has been used to determine the impact of changes in operating conditions 
and changes in physical properties on model sensitivities. The model is based 
upon standard centrifugation theory, namely a modified Stokes’ Law (Richardson 
and Zaki, 1954), which takes into account hindered settling. Hindered settling is a 
phenomenon which occurs when at higher solids concentrations (>2%) where 
particles interact, slowing the rate of sedimentation. With hindered settling the 
critical diameter is defined as  (Richardson and Zaki, 1954): 
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where Q is the volumetric throughput, μ is the dynamic viscosity of the fluid, Δρ is 
the difference in the densities between the liquid and solids phases, g is the 
acceleration due to gravity, Σ is the equivalent settling area of the centrifuge, Cv is 
the volume concentration of solids and σ is a geometric factor dependent upon 
solid particle shape (4.6 – for spherical particles). The calculation of Σ is dependent 
upon the type of centrifuge, but is dependent upon factors such as bowl 
dimensions and spin speed. Application of the grade efficiency curve, T(x), 
accounts for any non-idealities of fluid flow which may exist in industrial machines 
(Mannweiler, 1990): 
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The experimentally-determined parameters k and n describe the grade efficiency 
curve, while x and dc are the particle and critical particle diameters respectively. 
 

Application of a mass balance over the centrifuge stage, using the grade 
efficiency curve, and assuming a Normal feed particle size distribution with a mean 
m and a standard deviation σ, enables the clarification efficiency, c.e., to be 
calculated:  
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The function p(x) represents the Normal particle size distribution of the feed 
material. Clarification efficiency, as defined by equation 4, will be the performance 
criterion used in the following case studies. 
 
Case Study 
 

In this case study the variation of sensitivities with changes in operating 
conditions are investigated to determine their impact on the sensitivity of model 
variables. Operational conditions may change during the lifetime of a plant, for 
example if strain and culture improvements occur enabling fermentations to be 
carried out at higher cell densities. This will require that existing equipment is 
operated differently in order to maintain the desired product targets throughout the 
process. For example, the flow rate would have to be adjusted to suit a changed 
solids volume concentration as the critical diameter, dc, is directly affected by the 
volume concentration of solids (see equation 2) and also by any change in the 
viscosity arising from an increased solids concentration. Therefore, the flow rate 
must be reduced in such a case to ensure that the desired level of clarification was 
maintained. The study determined the effects of a change in solids volume 
concentration, from 5% to 30% v/v, on the predicted variable sensitivities. 

 
Two studies were carried out, the first using particle size, flow rate, viscosity 

and density difference and in the second solids volume concentration replaced 
density difference. In both studies the flow rate was adjusted so that at each 
operating point the clarification level was maintained at 98-99% and these changes 
are shown on Figure 3.  The range of each variable was +/- 5% of the operating 
point. Viscosity values were linked to the solids concentration, using experimental 
data (Salte et al, 2005). 
 
Results 

 
Figure 2: Sensitivities for the first case the study, where changes in sensitivity of 
particle size, flow rate, density difference and viscosity were analysed with respect to 
changes in solids fraction. These variable sensitivities were not found to change 
significantly over the range studied (solids fraction was varied from 5-30%). 

 



For the first study, where changes in the sensitivity of particle size, flow rate, 
density difference and viscosity were analysed, these variable sensitivities did not 
change significantly from the values shown in Figure 2, over the range of solids 
fractions studied (5-30%). This lack of change can be understood by inspecting 
equation 2. Since the target clarification level remains fixed at 98-99% and 
although the viscosity increases at higher solids densities, changes in flow rate 
compensate for this resulting in a similar critical diameter and thus similar 
clarification, over the ranges used in the global sensitivity analysis. The outcome of 
this is that the sensitivities remain unchanged. 

 

 

Figure 3: The change in variable sensitivities as a function of solids fraction 

changes – flow rate ; solids fraction ; particle size ; 

viscosity . Flow rate  was adjusted to ensure clarification was 
between 98 and 99% in all cases. 
 
The second case study produces more illuminating results, which are shown 

in Figure 3. Note that the lines for flow rate and viscosity sensitivity indices are co-
incident. The results shown in Figure 3 can be used to illustrate how the level of 
solids fraction produced in the fermentation broth impacts on the possible 
complexity of the process validation. When operating at the higher solids fractions 
it can be seen that there are two variables which significantly influence the 
performance, namely solids fraction and particle size but in contrast at lower solid 
fractions only particle size is a significant factor. Thus, the complexity of the 
validation task will be greater and more time consuming for the process operated 
at a higher solids fraction as the robust limits of operation for two variables rather 
than one will need to be investigated in detail. In addition, information gain from 
sensitivity analyses, such as this, will also impact on process operation and 
monitoring. For example, above a solids concentration of approximately 0.175 
(v/v), then the sensitivities which have the greatest effect on clarification are all 
associated with the physical properties of the fermentation broth, rather than the 
operation of the centrifuge. Thus changes in the operation of the fermentation give 



the biggest opportunity to influence the clarification efficiency. Therefore, as the 
solids concentration increases, the importance of monitoring the progress of the 
fermentation increases, since any change in the physical properties has the 
potential to have a big impact upon the output of the process, namely the 
clarification efficiency. 

 
Conclusions  

 
The influence of changes in operating conditions on variable sensitivities 

have been determined and this has been shown to give valuable insight when 
considering process operating strategies. The information has also been shown to 
give insight into the potential complexity of process validation, part of the 
regulatory approval process for therapeutics. 

 
Furthermore, knowledge of the significance of each variable may be used to 

make an assessment of the potential robustness of a process. For example, where 
a process is found to be highly sensitive to a certain variable, known to be subject 
to a significant level of uncertainty during operation, then this may serve as a 
warning that other process options should be considered, such as alternative 
ranges of operation or equipment. 
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