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Abstract 

A mixed integer non-linear optimization problem has been developed to aid in purchasing scrap steel. The 

model, which includes about 600 real-valued variables, 200 integers, and over 800 possible constraint 

equations, uses industrial data, actual market prices and supplier information to perform calculations. 

Prices, quality and supplier information are input or read into the model, along with selections of 

constraints and a production plan.  The model has been in use by production personnel. To date, the case-

by-case solution of the optimization problem has led to suggestions for improved steel blends and has 

indicated a potential for savings in monthly scrap purchases. 

 

Introduction 

The production of steel is dominated by the use of iron ore and recycled steel scrap. Recycled steel scrap is 

available on the open market as a commodity. The scrap commodity is purchased periodically to ensure 

that overall production targets are met. Recycled steel scrap is used primarily in electric arc furnaces (EAF) 

where it is blended and melted, batch-wise, to produce steel that is cast into solid shapes that are then 

rolled, treated, and shipped to customers. Producing families of steel grades with recycled steel scrap to 

meet customer requirements in a timely fashion is a key aspect of EAF operation. 

 

Purchased steel scrap is the most important feedstock material for an EAF, contributing significantly to 

production costs. Steel scrap can be used in different proportions to achieve desired physical and chemical 

properties of the finished product in order to meet customer requirements. The economical use of recycled 

steel scrap is governed by many factors including the prevailing market price and availability from each 

scrap supplier (e.g. cars vs. refrigerators) and the content of constituents such as copper, tin, sulfur and 

phosphorus. Limiting or controlling the level of these constituents is of primary concern to meet 

requirements such as hardness and weldability and to ensure that steel material properties are uniform 

across the cast piece. Since the price and quality of purchased scrap fluctuate, a periodic adjustment is 

required to the relative usage rate for each batch of steel made in a particular period of time. The 

determination of the steel scrap usage rates results in an optimization programming problem that seeks to 

minimize scrap purchase costs plus operating costs. Figure 1 shows that the solution of the programming 

problem should indicate which scrap supplier to purchase from, what scrap type to use, and in what lot 

quantities, in order to fill customer orders and to maintain desired inventory levels for the steel producer. 

 

 



Model Description 

An approximate cost equation can be developed for optimization by considering cost of steel scrap and the 

cost of electrical energy used to melt it in an EAF. The cost of scrap is directly related to market pricing 

and availability as well as internal inventory holding costs. Market prices are determined through monthly 

negotiations with local scrap suppliers. Internal inventory holding costs for a particular commodity like 

shredded scrap account for the opportunity costs of purchasing a similar commodity on the open market. 

Energy costs are focused on approximating the electricity use for each scrap type. Electricity use will vary 

with the quality of the scrap type, its density and how it was prepared by the supplier prior to its use in an 

EAF. 

 

Purchase costs and energy use costs can be related to the amounts of scrap used through Equation (1). The 

expression in Equation (1) is the economic objective function for the scrap blending optimization problem 

and is an estimate of the total operating cost c [$]. The purchase cost cp [$] in Equation (1) includes the 

costs incurred for adding m [kg] of each scrap type i to an EAF batch j to meet production demand. In 

addition to the amount of scrap added to each batch produced, the cost cp is related to the amount of scrap 

purchased from a particular supplier, the amount taken from inventory, and the integer decision variables 

used to choose the source and the pricing option for the scrap.  
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The energy cost term is calculated by multiplying the energy use y [kWh] by the market price for electricity 

ce [$/kWh]. The energy costs are computed for each of the J batches (heats). Each batch of steel produced 

requires its own addition of each of the I scrap types. The total number of batches J is set manually prior to 

optimization and the number I of available commodity types is also known for a selected time frame for a 

particular scrap purchase (i.e. one month). Cost is minimized by choosing the I×J scrap additions for the 

purchase period and the amounts to be purchased from suppliers. 

 

The electricity consumption y for each batch j=1,..,J is modeled via a PLS-based regression equation. The 

amount of electricity used is formulated by developing the relationship between the I scrap commodities 

and operating variables q, such as additions of chemical reagents and temperature settings. The production 

variables q are set as constants for each optimization run based on knowledge of each steel batch type. 

Models such as the one shown in Equation (2) can be fitted using historical data available from production 

data bases. Other consumables can be modeled in a similar fashion as well [Sandberg, 2005]. 
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To meet customer demands for steel properties, quality constraints need to be met for each of n=1,…,N 

attributes αni, such as scrap density and concentration of trace metals (e.g. chromium and nickel), for each 

batch that is produced. Each type of steel scrap added to the batch will have different quality attributes that 

impact the batch quality according to the amount of scrap used. In particular, density is an important 



attribute since it is related to the throughput of the furnace. Density is computed using a bulk relationship 

that is related to packing of steel in a container vessel, thus, scrap steel of the same or similar elemental 

content will have very different densities if it is shipped shredded or un-shredded by the scrap supplier. 

Constraints for properties such as these can be modeled as the bounds shown in Equation (3). Equation (3) 

shows upper and lower bounds on a weighted averaged property that is computed using a mass fraction rij 

for a particular blend. The mass fraction provides a weight that adjusts the blended batch property 

according to the mass of scrap added to the batch. 
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(3) 

For some elements, such as copper, the probability of exceeding the constraints in Equation (3) needs to be 

controlled carefully due to customer demands. To ensure that variability in the quality of the delivered 

scrap does not force a constraint violation during actual production, a ‘back-off’ is computed for the 

k=1,…,K important residual metals using the propagation of errors method of estimating variances, σ2, for 

the weight averaged blended property pk, (e.g. copper concentration) of the liquid steel. This is done via 

Equation (4). According to Equation (4), the estimated variance will change with the amount of scrap 

added to a particular batch at each computational step during numerical solution. An estimate of variance 

using Equation (4) ignores the multivariate interactions among changing properties of a particular steel 

scrap. This simplification allows for a smaller computational burden in solving the optimization problem 

numerically. 
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(4) 

Using this variance estimate and the blended property mean, taken to be pkj in Equation (4), the inverse 

normal distribution can be used to calculate a critical value zckj [Zhang, et al, 2002]. The critical value zckj 〉  

pkj is chosen to meet a specific upper tail probability. This ensures that the upper quality bound will be in 

the right tail of the distribution of the blended property which should result in a lower rate of constraint 

violations in production. Under the normality assumption the rate of blended property bound violations is 

expected to be equal to the chosen tail probability level. The constraint for limiting important residual 

metals like copper then becomes zckj≤UBkj for these K critical properties. 

 

To meet production demands, the mij scrap additions must be provided by selected suppliers. Certain 

suppliers of scrap steel sell at price levels that vary with the amount of scrap purchased for steel production. 

These price levels (tiers) can be modeled by introducing additional decision variables for a particular 

supplier [Heipcke, 2005]. In this formulation the decision variables ma, mb, and mc represent the amount 

[kg] of scrap purchased at cost [$/kg] ca, cb, cc. Scrap can not be purchased at cost cb until the maximum 

amount available at cost ca has been purchased. If the amounts [kg] that define these price levels are Ba, Bb, 



and Bc then the following set of expressions can be applied for each supplier that has tiered pricing 

t=1,…,T.  
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In Equation (5) the decision variables ba, bb, and bc are integer [0,1]. If scrap is purchased at say the price 

range b then ba=bb=1 and ma is set to Ba. If bb=0 then mb=0 and if bb=1 mb is limited to the maximum 

amount Bb, and if bc=0 then mc=0. The expression ba≥bb≥bc ensures that purchases are made at higher tiers 

only when the tiers below have been used. The total scrap purchased from a supplier is then mt =(ma + mb + 

mc)t, and the total cost [$] of the purchase is ct=(ca⋅ma + cb⋅mb + cc⋅mc)t. The list of expressions in Equation 

(5) can be expanded for cases where suppliers have more than three tiers for some scrap types.  

 

If a supplier does not use tiered pricing, then the total purchased amount [kg] is ms, s=1,…S, and the 

associated cost [$] is cs. Inventory can be treated as a supply source that provides scrap mu, u=1,…,U, at a 

specific internal holding cost cu. Equations (6) and (7) are then computed for each scrap type i=1…I. to 

calculate the total amount of each scrap type added to the EAF furnace and the associated cost of 

purchasing the scrap. Typically each of the sources of scrap supply whether tiered, single un-tiered, or 

internal inventory (T+S+U) can provide various scrap types to meet demand for producing blended recipes 

by replenishing each scrap type i=1,…I. The supply of scrap can therefore be equated to the demand for 

each scrap type through the key constraint in Equation (6). Total costs [$] for purchasing each scrap type 

are then given in Equation (7). This cost is used in the objective function shown in Equation (1). It is the 

sum of the costs incurred in purchasing scrap using various suppliers and price points. 
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If needed, bounds can be used to limit the amounts of scrap type added to each blend according to 

production requirements of supplier availability limits. Fixed amounts that must be purchased according to 

contractual obligations can be modeled by setting upper and lower bounds equal for the particular scrap 

type provided by a selected supplier. 

 

Results  

The model equations were programmed in a spreadsheet using a commercially available SQP-based solver 

software add-in, to minimize costs. The format chosen for this implementation allowed rapid development 



of the model. The model, as implemented in the spreadsheet, has fostered an improved method of making 

the monthly purchasing decision by allowing hands-on what-if studies to be done quickly. The studies are 

performed by specifying which batch recipes should be made during a month, by altering recipes while 

meeting steel grade requirements, and by verifying assumptions regarding the impact of adding more or 

less of certain scrap types to the furnace. Data integrity checking that was coded for the spreadsheet tool 

has provided an important benefit in that best guesses provided by experts regarding which constraints are 

binding can be verified easily. 

 

Although the model has been in use for a short time, this work has resulted in attractive projected cost 

savings estimates over three months of use. This result is encouraging; however, it is tempered by the at 

times strong market fluctuations in scrap prices that have a large impact on the available benefits that can 

be extracted through an optimization system such as this. 
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Figure 1: Scrap Purchasing Overview 


