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Abstract

A systems level understanding of the genetic protocol controlling apoptosis, programmed
cell death, is critical to the development of multi-targeted therapies for complex diseases
such as cancers and autoimmune diseases. While several methods exist to evaluate system
robustness, structured singular values offer the advantage of measuring the robustness of
specific biological performances to multiple, simultaneous parametric perturbations. In this
paper, the Fas-induced apoptosis network, whose failure has been cited in several forms
of cancer [14], is analyzed for robust stability to parametric uncertainty. Analysis reveals
apoptotic signalling is most sensitive to perturbations in degradation rates, while the system
is robustly stable to perturbations in complex formation and catalytic reactions. Correlation
analysis shows that the robustness of the interaction of caspase 8 with the mitochondria
is restricted by the robustness (or allowable variation) of other elements in the apoptotic
pathway. The robustness trends discovered via SSV analysis provides another measure
for model (in)validation, and the predicted uncertainty bounds have direct experimental
implications.



1 Introduction

A systems level understanding of the genetic protocol controlling apoptosis, programmed
cell death, is essential to understanding the maintenance of homeostasis of the immune
system [15] and to the development of multi-targeted therapies for complex diseases such
as cancers and autoimmune diseases. Despite years of effort, cancer therapy remains broadly
ineffective [7], and is generally detrimental to malignant and healthy cells alike. Cancers
acquire a variety of traits via the suppression of critical anti-growth signals and the hijacking
of cellular machinery (e.g. angiogenesis) so as to promote unmitigated growth. The failings
in the complex machinery allowing for tumorigenesis require a systematic understanding
of the networks governing cellular behavior. Mathematical models provide a means of
understanding cellular behavior at a systems level, and, as such, systems level phenomena
(cellular performance, system robustness, etc.) can be explored. In this work, an integrated
mechanistic and data-driven model of FasL-induced apoptosis is explored for parametric
robustness through sensitivity and structured singular values analysis.

Robustness is the relative insensitivity of a system to parametric and, at times, structural
uncertainties [17]. Robust systems maintain their state and behavior regardless of internal or
external disturbances, and, in highly robust systems, even structural disturbances produce
small to negligible effects in system performance. Robustness is a key characteristic
of biological processes [9], e.g. it is generally believed that the human genome has
approximately 120 irreparable mutations each generation, but these mutations typically
have no affect on the health or appearance of the individual. This is because the human
body uses positive and negative feedback, modularity, and redundancy to ensure robust
performance (in this case defined as health). Cellular signaling networks use the same
tactics to maintain signal sensitivity and accuracy in a noisy intracellular environment.

The necessary counterpart to system robustness is fragility. Any system designed to be
robust to a particular set of disturbances must become fragile to other often more complex,
exotic perturbations. The inherent trade-off between robustness and fragility has been long
known in engineering [9, 16]. In biology, systems evolve to be robust to routine external and
internal perturbations, and as such, will remain fragile to unconventional disturbances. By
applying sensitivity analysis and SSVs to the Fas-induced apoptosis model, the parameters
to which successful apoptotic signalling is fragile can be discovered.

Several methods have been developed to measure system robustness to parametric
uncertainty. When a system is limited to one or two uncertain parameters, bifurcation
analysis provides the greatest insight into the relationship between system behavior
and parameter variation. For larger systems from systems biology such as circadian
rhythms [18, 19] and signal transduction networks [8], sensitivity analysis has been used to
evaluate the effect of parameter variation on system behavior. Sensitivity analysis evaluates
the response of the system to an infinitesimal perturbation in a single parameter [22].
Sensitivity is a local measure, and should be calculated over a grid in parameter space.
As such, important correlations between parameters may elude discovery. Furthermore,
sensitivity analysis is valuable for identifying the set of disturbances that most affect the
system response, but it is difficult to relate the results to specific performance criteria.
Structured singular values (SSVs) offers a method to succinctly analyze system performance
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(a)

Parameter # Function wieght µ AV

J1_f 1 Formation of the DISC complex 1 0.101 987

J1_r 2 Deactivation of the DISC complex 1 8.99 11.3

J2_f 3 DISC and Casp8 complex formation 1 0.0856 1170

J2_r 4 DISC and Casp8 complex deformation 1 0.881 113.4

J3_k 5 DISC activation of Casp8 1 0.118 843

J4_f 6 Casp3 binding of activated Casp8 1 0.122 816

J4_r 7 Casp3 unbinding of activated Casp8 1 0.853 117

J5_k 8

Catalytic activation of Casp3 via 

Active Casp8 1 0.147 681

J9_f 11

Active Casp8 interaction with 

mitochondria 1 1.00 100

J11_k 12

Effect of activated mitochondria on 

apoptosome formation 1 1.01 99.2

J12_k 13

Mitochondrial catalytic activation of 

SMAC 1 1.00 100

J14_k 17

Casp3 activation via activated 

apoptosome interaction 1 0.88 114

J10_k 32

Catalytic activation of the 

mitochondria by active Casp8 1 1.00 100

Individual Perturbations

AV= allowable variatation

(b)

Figure 1: (a)The FasL induced apoptotic network, adapted from Hua, et al. [7]. Each
interaction is identified with an integer, and each interaction, i, may be associated with
a forward reaction, reverse reaction, and/or a catalytic reaction, labeled Ji f, Ji r, and
Ji k, respectively. (b) The most sensitive parameters and their allowable variations (AV)
calculated via SSV when each uncertainty is considered independently.
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robustness to parametric uncertainty.
Structured singular value (or µ) analysis presents the advantage of measuring

the robustness of specific biological performances to multiple, simultaneous parametric
perturbations. Given a specific performance objective, µ analysis determines the ranges
parameters can fluctuate prior to performance failure. Furthermore, the interdependencies
between robust elements can be explored, ultimately identifying the set of parameters upon
which system behavior is most dependent. SSV analysis has been used in flight simulator
design and other engineering application to identify parameters which must be accurately
measured and maintained [12].

In this work, sensitivity and SSV analysis are used to analyze the robust stability of
the Fas-induced apoptosis pathway [7]. Sensitivity analysis is used to identify the set of
parameters to which executioner caspase production is most sensitive. Once this subgroup
is identified, SSV analysis is used to elucidate both fragile and robust groupings within the
signalling network. Furthermore, the interdependencies between the robust elements are
explored to determine which robust parameters are dependent on the uncertainty ranges of
others.

2 Fas-induced Apoptosis

The model developed by Hua et al. incorporates a hybrid approach, integrating mechanistic
and data driven modelling, to accurately map apoptotic behavior due to FasL exposure in
Jurkat cells over a large set of initial conditions [7]. Currently, several research groups are
working to unravel the cellular networks controlling Fas-induced apoptosis. Proper control
of apoptosis is critical for normal development, maintenance of homeostasis in the immune
system, and adaptation. As such, dysregulation of cellular apoptosis is associated with
several degenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple
sclerosis [1, 11]. The Fas-induced apoptotic network is extracellularly activated by the
binding of the Fas ligand (FasL) to the transmembrane Fas receptor protein (See Figure
1a). The Fas receptor protein belongs to the tumor necroses factor (TNF) superfamily,
and is ubiquitously expressed in cells. Conversely, FasL is mainly present in activated T
lymphocytes, natural killer (NK) cells, and macrophages [10]. The binding of Fas and FasL
results in the formation of the death inducing signaling complex (DISC). DISC activates two
pathways, both resulting in the activation of executor caspase 3 [7]. In Type I activation,
significant levels of caspase 8 are required for caspase 3 activation. Yet, in Type II cells, only
a small amount of caspase 8 is sufficient to induce apoptosis as the death signal is indirectly
amplified by the mitochondrial activity [1]. Each of the interactions seen in Figure 1a is
identified with an integer, and each interaction, i, may be associated with a forward reaction,
reverse reaction, and/or a catalytic reaction, labeled Ji f, Ji r, and Ji k, respectively. All
reactions have first order, mass-action kinetics.
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Figure 2: (a)The block diagram of a state space system with uncertainty in the A matrix.
(b) The M∆ configuration.

3 Structured Singular Value Analysis

The structured singular value, introduced by John Doyle in 1982, is a generalization of the
singular value, σ̄, which provides a measure of the smallest “size” a perturbation block can
attain before instabilities occur in the system [16]. First, the system is linearized about
a desired steady state, and uncertain parameters are assigned multiplicative perturbations
in the form of ki = ki(1 + δiwi) such that δi ∈[-1 1] and wi weights the perturbation. All
perturbations are then collected into the ∆ block,

∆ =




δ1 0 0

0
. . . 0

0 0 δn


 , (1)

and the system is rearranged into the M∆ configuration (see Figure 2b). Properly
configured, SSV analysis determines the smallest ∆, measured in terms of its maximum
singular value, required to shift one of the system’s stable eigenvalues to the imaginary axis.
Thus, µ is defined as

µ(M)−1 ∆
= min

∆
{σ̄(∆)| det(I−M∆) = 0 for structured ∆}. (2)

If µ <1 for all frequencies, then, within the uncertainty bounds defined, the system is stable
for all possible parameter combinations. If, at some frequency, µ > 1, then the fluctuation
ranges on some parameters must be restricted.

The value of µ is calculated using the MUSSV Toolbox in Matlab [2]. For real,
scalar perturbations, µ is calculated by finding the first hypercube in uncertain parameter
space for which unstable systems exist. As such, re-weighting must be performed to scale
parameters which are most fragile, allowing for greater mobility in the direction of more
robust parameters. Properly weighting fragile parameters can provide insights into

• which uncertain elements dominate the fragile behaviors
• which elements are interrelated,
• and which elements weakly affect system stability.

To truly understand the nature of the stable parameter subspace, a series of re-weightings
is performed to determine parameter correlations.
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4 Results

4.1 Sensitivity Analysis
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Figure 3: The sensitivity of activated caspase 3 production to parameter perturbations. S
is the absolute value of the sensitivity.

The sensitivity of executioner caspase production to parameter perturbations can be seen
in Figure 3. As has been observed in other biological models, the sensitivity distributions
were generally robust to variations in parameter values [3], and the sensitivities generally
cluster into modules within the pathway. The most sensitive module is the direct activation
of caspase 3 via caspase 8. The interaction of caspase 8 and the mitochondria during
mitochondrial amplification and apoptosome formation is the second most sensitive group,
and the XIAP sequestering and deactivation of active executioner caspase is the third
most sensitive cluster. The Jurkat cells upon which the model is based exhibit Type II
behavior, and the model’s insensitivity to parameters in the Type I activation pathway is
not surprising.

4.2 SSV Analysis of the FasL Apoptosis Pathway

The system is linearized about its active stable steady-state (FasL= 10 ng/mL), and
weighting blocks are created for each of the sensitive parameters identified via sensitivity
analysis. Initially, all parameters are weighted equally, allowing the parameters to vary
between 0 and twice its nominal value. Then a series of re-weighting is performed to find
the largest subspace, in parameter space, in which the system remains stable.

Figure 1b shows the percent of allowable variation (in percentages with respect to the
parameter’s nominal value) before instability occurs when each parameter fluctuates in
isolation. All parameters exceed the requirement of allowing approximately 100% variation
about their nominal value except that of J1 r which can only tolerate 11.3% uncertainty in
its nominal value before instability. J1 r is the rate of deactivation for the Death Inducing
Signaling Complex (DISC). DISC formation involves the aggregation of oligomeric CD95,
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Figure 4: For 4 different weight sets, the allowable variation (AV) prior to destabilization is
shown. Weight set 3 shows the best overall attainable distribution of parameter robustness.
Attempts to increase the AV for any parameter beyond that of weight set 3 effects the AV
of other parameters in the system (weight set 4 for example). (b) The correlation matrix
depicting parameters whose AV is positively correlated.(c) The correlation matrix depicting
parameters whose AV is negatively correlated.
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the death domain (DD) containing FADD (an adaptor protein), procaspase 8, procaspase
10, and c-Flip[4], and as such, the first order rate constant for DISC formation (J1 f) must
be robust to the noise inherit in such a complicated aggregation process. Conversely, DISC
degradation is a simple zeroth order reaction and, as perturbations in the degradation rate
are unlikely, the system need not be robust in perturbations to J1 r.

Figure 4a shows the percent each parameter can vary simultaneously before system
instability occurs. Due to the nature of the algorithm used to find µ, the parameters are
re-weighted several times to discover the largest subspace in uncertain parameter space for
which stability is guaranteed. In the initial weight set, all parameters are weighted equally.
J1 r, the parameter accounting for DISC formation, limits the size of the stable hypercube
in uncertain parameter space and, as such, J1 r’s corresponding uncertainty bounds must
be re-weighted. A series of re-weightings are performed, and as seen for weighting set 3,
although J1 r is always limited to 11% variability, most parameters are robust up to 60% or
80% above or below their nominal values. The two most sensitive parameters are J1 r and
J4 r. J4 r accounts for the interaction of activated caspase 8 and caspase 3. In weighting
set 4, attempts to re-weight J4 r to allow for greater robustness of the caspase 8/caspase 3
binding mechanism requires sacrificing robustness in mitochondrial activation (J9 f).

Inspired by the trade-off in the robustness of mitochondrial activation and caspase
8/caspase 3 binding, the correlation of robust elements is explored by slightly perturbing the
weights about weight set 3, and calculating the correlation coefficients over 1000 randomly
generated weighting sets. The random weighting blocks are created by allowing the weights
from weighting set 3 to vary randomly within 5.0% of their nominal values. Correlation
coefficients relate the variation of the allowable variation (AV) between two parameters as
their robustness ranges vary. Two parameters whose AV has a correlation of 1 are perfectly
correlated while 0 correlation implies the robustness of the two elements are independent.
Negative correlation is of particular interest in that the robustness of one parameter is
restricting the AV of another.

Figures 4b and 4c show the correlation matrices for positively and negatively correlated
parameters, respectively. From Figure 4b, it is apparent that the robustness of caspase 3
binding of caspase 8 (J4 f) is directly proportional to the AV of DISC aggregation (J1 f),
DISC activation of caspase 8 (J3 k), and the catalytic activation of caspase 3 via activated
caspase 8 (J5 k). And the robustness of DISC activation of caspase 8 (J3 k) is directly
proportional to the robustness of the activation of executioner caspase via caspase 8 (J5 k).
Figure 4c shows that the AV of active caspase 8 interacting with the mitochondria (J9 f) is
restricted by the AV in the DISC activation of caspase 8 and caspase 3 binding of activated
caspase 8 (J3 k and J4 f, respectively). Furthermore, the AV in the executioner caspase
activation via activated apoptosome (J14 k) is limited by the AV in the degradation of the
caspase 8/DISC complex (J2 r) and the catalytic activation of caspase 3 via active caspase
8 (J5 k).

5 Discussion

Elucidating the control mechanisms maintaining apoptotic signaling is critical to cancer
therapeutic development and to understanding the maintenance and operation of the
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immune system. The Fas induced apoptosis (FIA) network is an attractive system as it
has been heavily studied [1, 3, 5, 6, 7, 20], and cancer cultures in which the death signal
is attenuated despite Fas-FasL bindings have been observed [10, 14]. Parameter robustness
analysis of the FIA network can provide insight into the genetic algorithm responsible for
accurate control of the apoptotic machinery.

Here, SSV analysis of the FIA reveals significant insights into the robustness of caspase 3
production that was not apparent via sensitivity analysis. While sensitivity analysis assigned
approximately equal significance in parameter robustness for parameters #1 through #8,
SSV analysis reveals that the system is far less robustly stable to the degradation of the
DISC complex than any other element in the direct activation of the executioner caspase.
And in reference to Figure 4a, apoptotic signalling tends to be more fragile to perturbations
in degradation/reverse reactions (parameters #2,4, 7, and 11). Degradation reactions are
generally zeroth order, independent of secondary species, and are expected to be less noisy.
Thus, one may infer that during the evolution of the apoptotic network, cellular machinery
was dedicated to protect elements prone to greater fluctuation and uncertainty. Elements
less prone to fluctuation were not allotted machinery to guarantee robust performance as it
would be both unessential and uneconomical.

Furthermore, SSV analysis provides insight into the trade-offs between robust elements
within the FIA network. The result that the robust stability of DISC formation, DISC
activation of caspase 8, caspase 3 binding of caspase 8 and the catalytic activation of caspase
3 via caspase 8 are directly related is not surprising as they appear in series in the apoptotic
signaling network, and the ability to allow robustness in any one element of the series will
provide more flexibility to the remaining elements. Contrarily, the restrictions placed on the
robustness of the interaction of caspase 8 and the mitochondria by the allowable variations
of the parameters associated with the DISC activation of caspase 8 and caspase 3 binding for
caspase 8 implies a certain conservation of robustness between these elements. These insights
would not have been feasible through sensitive analysis alone, and the results of this analysis
is directly applicable to future experimentation. As experimental protocol is developed to
analyze the system’s robustness (such as the genetic tug-of-war [13]), matching the trends
in parameter robustness predicted in this work provides a means of model (in)validation
separate from predicting apoptotic output.

SSV analysis shows important correlations in parameter robustness, and provides
insights into general trends that may have evolved in the Fas induced apoptotic network
to ensure robust performance. Future work will focus on further model refinement and
experimental validation of the apoptotic system’s robustness properties. As data becomes
available, the natural parameter variation observed in experimentation will be incorporated
in the analysis to establish a precedent for the AV used during the analysis. It is unlikely
that the AV bounds calculated by SSV at this point of model detail will be accurate, but
the trends in robustness properties may be experimentally verifiable. Furthermore, as more
data becomes available, performance criteria will be identified and used to further restrict
the conservatism of the results presented in this work.
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6 Procedure

6.1 Sensitivity Analysis

Sensitivity is the instantaneous response of the system to infinitesimal perturbations in a
parameter value. Mathematically defined as

S =
dy

dp
(3)

where y is the state of interest (protein concentration, gene expression level, etc.) and p
is an associated parameter. For multidimensional systems, the sensitivity matrix for an m
state and n parameter system is

S =




dy1

dp1
. . . dy1

dpn

...
. . .

...
dym

dp1
· · · dym

dpn


 . (4)

Sensitivity is direct measure of how much the system behavior shifts via parametric
perturbations. The sensitivities are calculated using the software BioSens [21] over varying
initial concentrations so as to approximate a semi-global understanding of the system’s
behavioral dependence on parameter fluctuations. Unlike many other works in systems
biology [3, 18, 19] where the sensitivity of all states (proteins, genes, etc.) are calculated
against all parameters, only the sensitivity of caspase 3 production to parameter uncertainty
is considered here. Assuming the pathway’s primary objective is to control the production
of executioner caspase, evaluating the sensitivities of other states in the system may be
misleading when trying to elucidate intracellular design strategies. The sensitivity results
are weighted by parameter size, but not by states since only one state is being evaluated.

6.2 Structured Singular Value Analysis

Structured singular value analysis is performed by linearizing the system

ẋ = f(x); (5)

and putting the system in the form

ẋ = Ax + Bu
y = Cx

(6)

where A is the system Jacobian, B is the Jacobian with respect to the inputs, and C
distributes the x vector between the outputs and inputs. For most of this work, B is simply
the identity matrix, and the only output, y, is active caspase 3.

Parametric uncertainty was incorporated by perturbing A such that Ap = A+W2∆W1,
where

W1 =




w1I
...

wpI




W2 =
[

A1 · · · Ap

]
(7)
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each Ai is designed to properly distribute the effects of perturbing parameter ki about the
original Jacobian, and each wi weights the size of the respective perturbation. If each Ai is
full rank, then each perturbation in the ∆ block must be repeated rank(A) times. For this
system, the rank(A) is either 1 or 2, thus matrix sizes are significantly reduced.

Once the two weighting blocks are formed, the system is in the form of that seen in Figure
2a. The MatLab µ Analysis and Synthesis Toolbox is used to create the M∆ structure seen
in Figure 2b. The algorithm to calculate µ for real, parametric perturbations searches
parameter space in a hypercube. In order to elucidate which parameters are most robust
and which are most fragile, fragile elements must be weighted so as to allow the algorithm
to expand more rapidly in more robust directions.
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