
DESIGN AND VALIDATION OF A NUMERICAL PROBLEM SOLVING ENVIRONMENT
FOR ORDINARY DIFFERENTIAL EQUATIONS

Mordechai Shacham, Ben-Gurion University, Beer-Sheva, Israel
Neima Brauner, Tel-Aviv University, Tel-Aviv, Israel

Michael B. Cutlip, University of Connecticut, Storrs, CT, USA
Michael Elly, Intel Corp., Qiryat Gat, Israel

Introduction
 In the last decade, two distinct directions have emerged in the use of Ordinary
Differential Equation (ODE) solver software (Enright [1]). These are Large Scale Scientific
Computation on workstations or large mainframe computers and Problem Solving
Environments (PSE’s) on personal computers. Most practicing engineers and scientists, as
well as engineering and science students, use numerical software for problem solving, while
only a few very specific research applications require large scale computing. Consequently,
this work is limited to PSE’s.
 We have carried out an extensive study of the requirements for a PSE intended for
solving ODE’s arising in Chemical and Biochemical engineering applications. In this study we
have collected a “Library” of 100 sample problems and solved these problems which contain
between one to 50 ordinary differential equations. Many of the problems were taken from the
book of Cutlip and Shacham[2] and the rest from our previous publications (Brauner et al.[3],
Shacham et al.[4],[5]) as well as from other sources. Mainly initial value problems were
considered in this study. Polymath 6.1 (copyrighted by M. Shacham, M. B. Cutlip and M. Elly,
http://www.polymath-software.com) and MATLAB (trademark of The Math Works, Inc.,
http://www.mathworks.com) were used for solving the problems and validating the results. Stiff
and non-stiff algorithms were used where needed. All the utilized algorithms included error
estimation and step-size control in order to achieve solution of a pre-specified error tolerance.
 The specific needs for a PSE of ODE’s that were identified in this study included the
following:

1. Providing Approximations to the Solution at "Off-Mesh" Points - Most ODE solvers provide

approximations to the solution only on a discrete, adaptively chosen mesh (determined by
the step-size control algorithm). There are many applications where off-mesh values of the
variables are needed. These applications include, for example, output of the results at
equal intervals, plotting an oscillatory solution in a form of a continuous curve instead of
"broken lines", output of the results for pre-specified values of the independent variable (as
required in parameter estimation problems) and finding minimal and maximal values of
variables.

2. Enabling Event Control - Often the value of an independent variable controls the solution
process, and the independent variable may reach a critical value (event) at an off-mesh
point. A typical example of such a situation is in a biochemical problem, where the
integration must be stopped when the amount of biomass reaches zero, as the model
equations are not valid for negative biomass values.

3. Dealing with Discontinuities - Most numerical algorithms assume continuity of the
derivatives, but often there is a need to change the derivative function during the
integration. (A typical example is an exothermic reactor, which should be heated until the
reaction starts, and then should be cooled). Such a change may not be properly handled
by the integration algorithm, and an erroneous solution may result.

4. Implementation of Delays – Delays, which often appear in control related problems, may
require historical data for selected variables. Such data often include off mesh points.

5. Validation of Approximate Solutions - Numerical solutions of ODE’s are always considered
"approximate", while the error estimation and step size control provide "some confidence in
the numerical solution" (Shampine[6]). In many cases further validation is required to assure
an acceptable confidence level.

 Many of the identified needs required improved capabilities in traditional ODE solvers.
Many needs can be met if the solution is stored as a vector of piecewise interpolating
polynomials. Such polynomials will enable the generation of off mesh points of the dependent
variables both in the current integration step and in previous steps (history). It is also essential
to stop and restart the integration at points of discontinuity, so that the integration algorithm
has to deal only with continuous functions. The validity of a problem solution can be verified by
using several different algorithms with careful consideration of the error tolerances and with
examination of "residual plots" of the results.
 The study revealed cases where the use of state-of-the-art software resulted in
solutions with erroneous oscillatory behavior. In the remainder of the paper we investigate the
cause of this erroneous behavior with two examples and suggest a method to overcome it.

A Motivating Example – Oxidation of Ortho-Xylene to Phthalic Anhydride in a Tubular
Reactor

 Consider the oxidation of ortho-xylene (A) to phthalic anhydride (B) in an ideal,
continuous flow tubular reactor (Rase[7], Ingham et al.[8]). The reaction proceeds via a complex
consecutive parallel reaction sequence

COA

CBOA
k

kk

⎯→⎯+

⎯→⎯⎯→⎯+
3

21

2

2 (1)

where C represents waste gaseous products (CO and CO2).
 The reactor model (including the numerical constants) is shown in Table 1. The model
equations and the comments, shown in Table 1, provide a complete documentation of the
problem. Note that the model is described in a format that is consistent with the Polymath
software package. Thus, the model can be copied from Table 1, pasted into the ODE solver
program of the Polymath package, and the ODE’s integrated to the specified reactor length.
 When the problem is solved using the RKF45 algorithm of Polymath with the numerical
values shown in Table 1, the results presented in Table 2 and Figures 1 and 2 are obtained. In
Table 2 the initial, maximal, minimal and final values of the temperature and the flow-rates of
components A, B and C are shown. The temperature rises near the entrance to the reactor
(see Figure 1), reaches maximal value of 687.1 K than decreases gradually to an almost
constant value of 662.2 K toward the exit from the reactor. The molar flow rate of the desired
product, phthalic anhydride reaches a maximum value of NB = 0.00668 kmol/h at about z =

6.26 m (see Figure 2). From this point on, the flow rate of B decreases and the flow rate of the
undesired product C is increases.
 Solving the very same problem using the explicit ode45 function of MATLAB yields the
temperature profile shown in Figure 3. In this plot the decrease of the temperature from its
maximum value is oscillatory instead of the smooth and gradual decrease indicated by Figure
1. It is very important to determine which of these solutions is correct and to identify the
reason(s) for the incorrect solution so that it can be prevented. These issues will be discussed
in the next section.

Analysis of Calculated Temperature Profile in Example Problem 1

 It is easy to verify that the correct temperature profile is the smooth curve shown in
Figure 1 and not the oscillatory one shown in Figure 3. This can be done by rerunning the
problem with MATLAB using the same explicit ode45 function with reduced error tolerances or
using a stiff algorithm such as ode23s with the default error tolerances. However, it is very
important to determine what caused a sophisticated algorithm with error estimation and
adaptive step size control to yield incorrect results.
 The Polymath RKF45 method uses the Runge-Kutta-Fehlberg algorithm (Forsythe et
al.[9]) while the MATLAB ode45 function uses a more recent Dormand-Prince[10] version of the
Runge-Kutta method. Both programs include adaptive step-size control algorithms that
monitor the estimate of the integration error, and reduce or increase the step size of the
integration in order to keep the error below a specified threshold. The accuracy requested is
that either the relative or absolute (maximal) errors be less than the truncation error tolerance.
In MATLAB, both relative (RelTol) and absolute (AbsTol) tolerances can be specified. The
default values (that were used in solving the example problem) are RelTol= 0.001 and AbsTol=
10-6. In Polymath only the RelTol can be specified with a default value of 10-6. Polymath also
allows to specify minimum number of reporting points (the default is RP = 100). The solution
algorithm (the RKF algorithm, in this case) is forced to adjust the step size so that at least RP
full steps are carried out inside the integration interval irrespective of the error tolerance used.
In the ode45 algorithm, four points (instead of one) are reported for each Runge-Kutta
integration step. The additional points are calculated by cubic Hermite interpolation to the
values and slopes computed at the ends of the step.
 The results reported in the previous section were obtained by the RKF45 algorithm
using 100 integration steps, while the ode45 algorithm executed only 28 steps and reported the
results in 112 points. If the relative error tolerance is reduced to RelTol = 10-6 (the same as the
RKF45 default value), ode45 yields the same results that are shown in Figure 1 using 42
integration steps. Thus, in this case, incorrect results were caused by inadequate error
tolerance. But one must question why the default error tolerances, which are sufficient for most
problems (according to the developers' experience), are too large for this particular problem.
 To further investigate this point, the Jacobian matrix of the ODE system can be
calculated. Let us rewrite the system of ODEs (presented in Table 1) in the following form

()

()

()CB
C

CB
B

CB

XXTf
dz
dX

XXTf
dz
dX

XXTf
dz
dT

,,

,,

,,

3

2

1

=

=

=

 (2)

The matrix of partial derivatives (Jacobian matrix) can be defined

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

CB

CB

CB

X
f

X
f

T
f

X
f

X
f

T
f

X
f

X
f

T
f

333

222

111

J (3)

The eigenvalues of the Jacobian matrix can provide indication regarding the stiffness of the
problem. An indicator recommended by Rice and Do[11] is the stiffness ratio, defined by
equation (4)

i

iSR
λ
λ

min
max

= (4)

where iλmax is a negative eigenvalue of the J matrix with maximal absolute value and

iλmin is a negative eigenvalue of the J matrix with minimal absolute value. When SR>1000
the system of ODEs is considered a stiff system.
 The elements of the Jacobian matrix can be also helpful in determining the upper

bounds on the errors in the calculated values of the slopes ⎟
⎠
⎞

⎜
⎝
⎛

dz
dX

and
dz
dX

dz
dT CB, using the error

propagation formula. Let δT, δXB and δXC be the truncation errors in the temperature,
conversion of B and conversion of C respectively. Then, the upper bound on the error of the
slope dT/dz, for example, is given by

() C
C

B
B

X
X
fX

X
fT

T
fdzdT δδδδ

∂
∂

+
∂
∂

+
∂
∂

= 111/ (5)

 In Table 3 the elements of the Jacobian matrix, the eigenvalues, and the stiffness ratio
values are shown for the initial point (z = 0) and the final point (z =8). The problem is not
considered stiff by the commonly used measures as SR = 397.95 at the initial point and SR =
27.87 at the final point. However, the partial derivative values associated with the calculation of
the error ()dzdT /δ using equation (5) are very large. Introducing the numerical values at the
final point, for example, yields

() () () ()CB XXTdzdT δδδδ 1791524.10/ ++=
Thus, the error in the slope is larger by an order of magnitude than the error in the
temperature, and by more than two orders of magnitude than the error in XB and XC.
 A comparison of the actual error in the temperature and its slope values was made by
dividing the integration interval into 112 sections (according to the ode45 reporting points when
the default error tolerance was used). The integration was carried out separately for the 112
sections so that the variable values at the reporting points can be compared. The use of very
small integration intervals ensured that the results obtained were accurate, so that the
difference between the new and previously obtained results can be considered as the error in
Tδ or ()dzdT /δ .

 Figure 4 shows the errors in the calculated temperature values as function of the
distance from the entrance to the reactor. The maximal deviations are approximately 0.8 K to -
0.8 K, thus the relative error is 0.8/670 ~ 0.001, which is consistent with the specified relative
error tolerance. In Figure 5 the errors in the dT/dz values are shown. Those errors are
approximately ten times larger than the respective temperature value errors. This is consistent
with the error propagation formula assuming that the errors δXB and δXC can be neglected. The
temperature slope is gradually decreasing (in absolute value) when the reactor exit is
approached. The value of dT/dz = -1 at about z = 3.8 and dT/dz = -0.227 at about z = 8.
Considering that the error at some point reaches a value close to 8 implies relative errors over
2000%.
 In order to assess the role of the interpolation used in ode45 for increasing the number
of reported points, the calculation of the error in the temperature values was repeated after
removing the points that were obtained by interpolation. The resultant plot is shown in Figure 6.
A comparison of Figure 6 with Figure 4 reveals that removal of the interpolated points almost
completely eliminated the positive deviations; thus the interpolation is responsible for about
half of the amplitude of the oscillation cycle.

Aerobic Microbial Growth Problem – A Stiff Example (Brauner et al.[3])

 The system of equations representing example problem 2 is shown in Table 4. There
are three differential equations representing the concentration of the cells (x), the substrate (S)
and oxygen (O2) in a microbial growth system. The model equations and the comments,
shown in the Table, provide a complete documentation of the problem. The format of the
model is consistent with Polymath.
 In this case there are substantial differences between the oxygen concentration profiles
obtained with the RKF45 algorithm of Polymath and the ode45 function of MATLAB when the
default error tolerances are used. The solution obtained by the RKF45 algorithm (RelTol = 10-

6) is a smooth curve as can be seen in Figure 7. The oxygen concentration changes are very
small in absolute values. At the start, the concentration decreases from the initial value of 8
mg/l to 7.9975 mg/l, then increases gradually to a maximum of 7.998778 mg/l and decreases
again gradually to a minimum value of 7.99371 mg/l at time t= 6 h 25 min. Shortly after this
time all the substrate is consumed and the concentration of the oxygen returns to the initial
value of 8 mg/l.
 The solution obtained with the ode45 function is oscillatory, as shown in Figure 8, with
deviations of up to 0.008 mg/l (or -0.008 mg/l) from the correct values. It should be pointed out
that the maximal deviations are larger than the maximal change in the oxygen concentration
(0.0063 mg/l). To investigate the cause of the oscillation, the Jacobian matrix of the system of
equations and its eigenvalues have been calculated. These values are shown in Table 5 at the
initial point (t = 0) and at the point where all the substrate is consumed (t = 6.5 h). It can be
seen that the system is stiff (the stiffness ratio SR = 9900 at t = 6.5 h, for example). To check
whether the oscillations can be attributed to the stiffness, the problem was resolved using the
explicit ode45 function, after reducing the relative error tolerance to RelTol = 10-6.
 With the reduced error tolerance, the correct solution shown in Figure 7 was obtained.
Thus, the explicit Runge-Kutta algorithm with adaptive step-size control is shown to yield
correct solutions to stiff systems, provided that adequate error tolerances are specified. Of
course, an explicit algorithm is very inefficient in solving stiff problems. The ode45 function
used 1220 steps to obtain the correct solution of this problem, while the stiff ode23s algorithm
used only 57 steps.

 The propagated error in the slope of the oxygen concentration δ(dO2/dt) can be
calculated using the terms of the Jacobian matrix at t = 6.5 h.

() () () ()2400143.1627658.0/2 OSxdtdO δδδδ ++=
 Thus, the upper limit of the absolute error in the slope is 400 times the error in the
oxygen concentration: 3.2 mg/l-h. Considering that the value of dO2/dt is in mostly in the
range of 10-3 – 10-5, the relative errors reach very large values.

Conclusions

 The cause of erroneous oscillatory behavior when solving systems of ODE’s with state-
of-the-art software has been investigated. This oscillatory behavior may result from the use of
inappropriately large error tolerances. Depending on the terms of the Jacobian matrix, small
errors in the variable values may lead to very large relative errors in the derivative values.
These errors cause the erroneous oscillations.
 The oscillations can be prevented by monitoring the errors in the derivative values and
restarting the integration with smaller error tolerances when the error in the derivatives
exceeds a certain limit.
 The two examples considered in this work show that the use of an explicit integration
algorithm for a stiff system does not necessarily cause erroneous oscillatory behavior provided
that adequate error tolerances are specified. The adaptive step change algorithms of the
explicit methods can provide correct solutions also for stiff systems at the expense of much
lower efficiency than that achieved with stiff algorithms.

References

1. Enright W.H.(2002), "The design and implementation of usable ODE software", Numerical Algorithms
31 (1-4): 125-137.

2. Cutlip, M. B. and Shacham, M. (2006), Problem Solving In Chemical and Biochemical Engineering with
Polymath, Excel and MATLAB. Prentice-Hall, Upper Saddle River, New-Jersey.

3. Brauner, N., Shacham, M. and M. B. Cutlip (1996), ``Computational Results: How Reliable Are They? A
Systematic Approach to Modal Validation'', Chem. Eng. Educ., 30 (1), 20-25.

4. Shacham, M., N. Brauner and M. Pozin(1995), "Potential Pitfalls in Using General Purpose Software
for Interactive Solution of Ordinary Differential Equations", Acta Chimica Slovenica, 42(1), 119.

5. Shacham, M., N. Brauner and M. B. Cutlip (2001), "Prediction and Prevention of Chemical Reaction
Hazards – Learning by Simulation", Chem. Eng. Educ., 35(4), 268-273.

6. Shampine L.F. (2005), "Error estimation and control for ODEs", Journal of Scientific Computing 25 (1): 3-
16.

7. Rase, Howard F. (1977), Chemical Reactor Design For Process Plants, New York, John Wiley.

8. Ingham, John, Irving J. Dunn, Elmar Heinzle and Jiri E. Prenosil (1994), Chemical Engineering Dynamics
: Modelling with PC Simulation, Weinheim,VCH

9. Forsythe, G.E., M.A. Malcolm, and C.B. Moler (1977), Computer Methods for Mathematical Computation,
Englewood Cliffs, Prentice-Hall.

10. Dormand, J. R. and P.J. Prince (1980), "A family of Embedded Runge-Kutta Formulae, J. Comp. Appl.
Math., 6, pp. 19-26.

11. Rice, R. G. and D.D. Do (1995), Applied Mathematics and Modeling for Chemical Engineers, New York,
John Wiley.

Table 1. Mathematical Model for the Tubular Reactor Example

Line Equation, #Comment
1 d(Temp)/d(z) = B2 * RB + B3 * RC – B4 * (Temp – Tj) # Temperature in the reactor [K] (energy balance)
2 d(XB)/d(z) = B1 * RB # Conversion to phthalic anhydride (mol balance)
3 d(XC)/d(z) = B1 * RC # Conversion to CO and CO2 (mol balance)
4 G = 4684 # Superficial mass velocity [kg/m^2-h]
5 MM = 0.02948 # Mean molecular weight [g/mol]
6 NA0 = 9.27e-3 # Inlet mole fraction of o-xylene
7 N0 = 0.208 # Mole fraction of oxygen
8 CP = 0.25 # specific heat [kcal/kg K]
9 H1 = -307 # Heat of reaction A -> B [kcal/mol]
10 H3 = -1090 # Heat of reaction A -> C [kcal/mol]
11 RHOB = 1300 # Catalyst bulk density [kg/m^3]
12 DP = 3e-3 # Catalyst particle diameter [m]
13 U = 82.7 # Heat transfer coefficient [kcal/m^2-h-K]
14 DT = 0.025 # Tube diameter [m]
15 R = 1.897 # Gas constant [cal/mol-K]
16 Tj = 660 # Cooling jacket temp. [K}
17 B1 = RHOB * MM / (G * NA0) # Combined terms in the mole balance eqs.
18 B2 = RHOB * (-H1) / (G * CP) # Combined terms in the energy balance eqs.
19 B3 = RHOB * (-H3) / (G * CP) # Combined terms in the energy balance eqs.
20 B4 = 4 * U / (G * CP * DT) # Combined terms in the energy balance eqs.
21 XA = XB + XC # Conversion of o-xylene
22 NA = NA0 * (1 – XA) # Mole fraction of o-xylene
23 NB = NA0 * XB # Mole fraction of phtalic anhydride
24 K1 = 1000 * exp(-27000 / (R * Temp) + 19.837) # Kinetic constant of the 1st reaction [kmol/kg(cat) – h]
25 K2 = 1000 * exp(-31400 / (R * Temp) + 20.86) # Kinetic constant of the 2nd reaction [kmol/kg(cat) – h]
26 K3 = 1000 * exp(-28600 / (R * Temp) + 18.97) # Kinetic constant of the 3rd reaction [kmol/kg(cat) – h]
27 RA = -(K1 + K3) * NA * N0 # Rate of reaction of o-xylene [kmol/kg(cat) – h]
28 RB = K1 * NA * N0 – K2 * NB * N0 # Rate of generation of phtalic anhydride [kmol/kg(cat) – h]
29 RC = K3 * NA * N0 + K2 * NB * N0 # Rate of generation of CO and CO2 [kmol/kg(cat) – h]
30 XB(0) = 0 # Initial conversion to phtalic anhydride
31 XC(0) = 0 # Initial conversion to CO and CO2
32 Temp(0) = 650 # Initial temp. in the reactor [K]
33 z(0) = 0
34 z(f) = 8 # Reactor length [m]

Table 2. Principal Results for the Tubular Reactor Example

 Initial Minimal Maximal Final
 Value Value Value Value

z (m) 0 0 8 8
Temp. (K) 650 650 687.0774 662.2154
NA (kmol/h) 0.00927 0.0002977 0.00927 0.0002977
NB (kmol/h) 0 0 0.0066834 0.0066026
NC (kmol/h) 0 0 0.0023697 0.0023697

Table 3. Jacobian Matrix and its Eigenvalues for the Tubular Reactor Example

 Initial Point (z = 0) Final Point (z = 8)
 Jacobian Matrix Eigenvalues Jacobian Matrix Eigenvalues

1 -7.2597 -101.15 -117.9 -7.1373 -10.382 -152.35 -179.43 -10.374
2 0.0073076 -0.23394 -0.2169 -0.36324 -0.000397 -0.35528 -0.3278 -0.029479
3 0.0008886 -0.007886 -0.0249 -0.017935 0.0007814 -0.01106 -0.0386 -0.37226

SR 397.95 27.87

Table 4. Mathematical Model of the Aerobic Microbial Growth System

Line Equation, #Comment
1 d(x)/d(t) = mju * x # Cell concentration [g/liter]

2
d(S)/d(t) = If (S > 0) Then (-(mju * x) / Yxs - m * x) Else (0) # Substrate concentration
[g/liter]

3
d(O2)/d(t) = KLa * (O2star - O2) - mju * x / Yxo2 - mo2 / x # Oxygen concentration
[mg/liter]

4 Ks = 0.05 # Constant [g/liter]
5 mjumax = 0.6 # Constant [1/h]
6 mju = mjumax * S / (Ks + S)
7 Yxs = 0.5 # Constant [g-cells/g-glucose]
8 Yxo2 = 1 # Constant [g-cells/g-O2]
9 m = 0.08 # Constant [g-glucose/g-cells-h]
10 KLa = 400 # Constant [1/h]
11 mo2 = 0.1 # Constant [g-O2/g-cells-h]
12 O2star = 8 # Constant [mg/liter]
13 t(0) = 0
14 t(f) = 10 # Final time [h]
15 x(0) = 0.1 # Initial cell concentration [g/liter]
16 S(0) = 10 # Initial substrate concentration [g/liter]
17 O2(0) = 8 # Initial oxygen concentration [mg/l]

Table 5. Jacobian Matrix and its Eigenvalues for the Aerobic Microbial Growth System

 Initial Point (t = 0) All Substrate Consumed (t = 6.5)
 Jacobian Matrix Eigenvalues Jacobian Matrix Eigenvalues

1 0.59701 2.97E-05 0 -400 0.281 16.143 0 -400
2 -1.274 -5.94E-05 0 3.9805E-06 -0.64199 -32.29 0 -31.965
3 9.403 -2.97E-05 -400 0.59695 -0.27658 -16.14 -400 -0.040402

SR 9900

650

660

670

680

690

0 2 4 6 8

Reactor Length (m)

Te
m

pe
ra

tu
re

 (K
)

Figure 1. Temperature Profile in the o-xylene Oxidation Reactor (Obtained by the Polymath

RKF45 Algorithm)

0.0E+00

2.1E-03

4.2E-03

6.3E-03

8.4E-03

1.1E-02

0 2 4 6 8

Reactor Length (m)

M
ol

ar
 fl

ow
 ra

te
 (k

m
ol

/h
)

o-xylene
phtalic anhydride
CO, CO2

Figure 2. Flow Rate Profiles of the Reactant and the Product in the o-xylene Oxidation
Reactor (Obtained by the Polymath RKF45 Algorithm)

0 1 2 3 4 5 6 7 8
650

655

660

665

670

675

680

685

690
 Plot of dependent variable y1

 Reactor Length (m)

T
em

pe
ra

tu
re

 (
K

)

Figure 3. Temperature Profile in the o-xylene Oxidation Reactor (Obtained by the MATLAB

ode45 Algorithm)

0 1 2 3 4 5 6 7 8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 Reactor Length (m)

 E
rr

or
 in

T

em
pe

ra
tu

re
 (

K
)

Figure 4. Error in the Calculated Temperature Values (ode45 function, RelTol = 0.001)

0 1 2 3 4 5 6 7 8
-8

-6

-4

-2

0

2

4

6

8

 Reactor Length (m)

E
rr

or
 in

 T
em

pe
ra

tu
re

 S
lo

pe
 (

K
/m

)

Figure 5. Error in the Calculated dT/dz Values (ode45 function, RelTol = 0.001)

0 1 2 3 4 5 6 7 8
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

 Reactor Length (m)

 E
rr

or
 in

 T
em

pe
ra

tu
re

 (
K

)

Figure 6. Error in the Calculated Temperature Values (ode45 function, RelTol = 0.001,
Interpolated Points Removed)

7.993

7.994

7.995

7.996

7.997

7.998

7.999

8

8.001

0 2 4 6 8 10

Time (h)

O
xy

ge
n

Co
nc

en
tra

tio
n

(m
g/

lit
er

)

Figure 7. Oxygen Concentration Profile in the Aerobic Microbial Growth System (Obtained
by the Polymath RKF45 algorithm)

0 1 2 3 4 5 6 7 8 9 10
7.985

7.99

7.995

8

8.005

8.01

 Time (h)

 O
xy

ge
n

co
nc

en
tr

at
io

n
(m

g/
lit

er
)

Figure 8. Oxygen Concentration Profile in the Aerobic Microbial Growth System (Obtained
by the MATLAB ode45 algorithm)

