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Introduction 
  In the last decade, two distinct directions have emerged in the use of Ordinary 
Differential Equation (ODE) solver software (Enright [1]).  These are Large Scale Scientific 
Computation on workstations or large mainframe computers and Problem Solving 
Environments (PSE’s) on personal computers. Most practicing engineers and scientists, as 
well as engineering and science students, use numerical software for problem solving, while 
only a few very specific research applications require large scale computing. Consequently, 
this work is limited to PSE’s. 
  We have carried out an extensive study of the requirements for a PSE intended for 
solving ODE’s arising in Chemical and Biochemical engineering applications. In this study we 
have collected a “Library” of 100 sample problems and solved these problems which contain 
between one to 50 ordinary differential equations. Many of the problems were taken from the 
book of Cutlip and Shacham[2] and the rest from our previous publications (Brauner et al.[3], 
Shacham et al.[4],[5]) as well as from other sources. Mainly initial value problems were 
considered in this study. Polymath 6.1 (copyrighted by M. Shacham, M. B. Cutlip and M. Elly, 
http://www.polymath-software.com) and MATLAB (trademark of The Math Works, Inc., 
http://www.mathworks.com) were used for solving the problems and validating the results. Stiff 
and non-stiff algorithms were used where needed. All the utilized algorithms included error 
estimation and step-size control in order to achieve solution of a pre-specified error tolerance.  
  The specific needs for a PSE of ODE’s that were identified in this study included the 
following: 
 
1. Providing Approximations to the Solution at "Off-Mesh" Points - Most ODE solvers provide 

approximations to the solution only on a discrete, adaptively chosen mesh (determined by 
the step-size control algorithm). There are many applications where off-mesh values of the 
variables are needed. These applications include, for example, output of the results at 
equal intervals, plotting an oscillatory solution in a form of a continuous curve instead of  
"broken lines", output of the results for pre-specified values of the independent variable (as 
required in parameter estimation problems) and finding minimal and maximal values of 
variables. 

2. Enabling Event Control - Often the value of an independent variable controls the solution 
process, and the independent variable may reach a critical value (event) at an off-mesh 
point. A typical example of such a situation is in a biochemical problem, where the 
integration must be stopped when the amount of biomass reaches zero, as the model 
equations are not valid for negative biomass values. 



3. Dealing with Discontinuities - Most numerical algorithms assume continuity of the 
derivatives, but often there is a need to change the derivative function during the 
integration. (A typical example is an exothermic reactor, which should be heated until the 
reaction starts, and then should be cooled).  Such a change may not be properly handled 
by the integration algorithm, and an erroneous solution may result.  

4. Implementation of Delays – Delays, which often appear in control related problems, may 
require historical data for selected variables. Such data often include off mesh points.  

5. Validation of Approximate Solutions - Numerical solutions of ODE’s are always considered 
"approximate", while the error estimation and step size control provide "some confidence in 
the numerical solution" (Shampine[6]). In many cases further validation is required to assure 
an acceptable confidence level. 

 
  Many of the identified needs required improved capabilities in traditional ODE solvers. 
Many needs can be met if the solution is stored as a vector of piecewise interpolating 
polynomials. Such polynomials will enable the generation of off mesh points of the dependent 
variables both in the current integration step and in previous steps (history). It is also essential 
to stop and restart the integration at points of discontinuity, so that the integration algorithm 
has to deal only with continuous functions. The validity of a problem solution can be verified by 
using several different algorithms with careful consideration of the error tolerances and with 
examination of  "residual plots" of the results.  
  The study revealed cases where the use of state-of-the-art software resulted in 
solutions with erroneous oscillatory behavior.  In the remainder of the paper we investigate the 
cause of this erroneous behavior with two examples and suggest a method to overcome it. 
 

A Motivating Example – Oxidation of Ortho-Xylene to Phthalic Anhydride in a Tubular 
Reactor 

 
  Consider the oxidation of ortho-xylene (A) to phthalic anhydride (B) in an ideal, 
continuous flow tubular reactor (Rase[7], Ingham et al.[8]). The reaction proceeds via a complex 
consecutive parallel reaction sequence 
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where C  represents waste gaseous products (CO and CO2). 
  The reactor model (including the numerical constants) is shown in Table 1. The model 
equations and the comments, shown in Table 1, provide a complete documentation of the 
problem. Note that the model is described in a format that is consistent with the Polymath 
software package. Thus, the model can be copied from Table 1, pasted into the ODE solver 
program of the Polymath package, and the ODE’s integrated to the specified reactor length.  
  When the problem is solved using the RKF45 algorithm of Polymath with the numerical 
values shown in Table 1, the results presented in Table 2 and Figures 1 and 2 are obtained. In 
Table 2 the initial, maximal, minimal and final values of the temperature and the flow-rates of 
components A, B and C are shown. The temperature rises near the entrance to the reactor 
(see Figure 1), reaches maximal value of 687.1 K than decreases gradually to an almost 
constant value of 662.2 K toward the exit from the reactor. The molar flow rate of the desired 
product, phthalic anhydride reaches a maximum value of NB = 0.00668 kmol/h at about z = 



6.26 m (see Figure 2). From this point on, the flow rate of B decreases and the flow rate of the 
undesired product C is increases.   
  Solving the very same problem using the explicit ode45 function of MATLAB yields the 
temperature profile shown in Figure 3. In this plot the decrease of the temperature from its 
maximum value is oscillatory instead of the smooth and gradual decrease indicated by Figure 
1. It is very important to determine which of these solutions is correct and to identify the 
reason(s) for the incorrect solution so that it can be prevented. These issues will be discussed 
in the next section. 
 

Analysis of Calculated Temperature Profile in Example Problem 1 
 
  It is easy to verify that the correct temperature profile is the smooth curve shown in 
Figure 1 and not the oscillatory one shown in Figure 3. This can be done by rerunning the 
problem with MATLAB using the same explicit ode45 function with reduced error tolerances or 
using a stiff algorithm such as ode23s with the default error tolerances. However, it is very 
important to determine what caused a sophisticated algorithm with error estimation and 
adaptive step size control to yield incorrect results. 
  The Polymath RKF45 method uses the Runge-Kutta-Fehlberg algorithm (Forsythe et 
al.[9]) while the MATLAB ode45 function uses a more recent Dormand-Prince[10] version of the 
Runge-Kutta method.  Both programs include adaptive step-size control algorithms that 
monitor the estimate of the integration error, and reduce or increase the step size of the 
integration in order to keep the error below a specified threshold. The accuracy requested is 
that either the relative or absolute (maximal) errors be less than the truncation error tolerance. 
In MATLAB, both relative (RelTol) and absolute (AbsTol) tolerances can be specified. The 
default values (that were used in solving the example problem) are RelTol= 0.001 and AbsTol= 
10-6. In Polymath only the RelTol can be specified with a default value of 10-6. Polymath also 
allows to specify minimum number of reporting points (the default is RP = 100). The solution 
algorithm (the RKF algorithm, in this case) is forced to adjust the step size so that at least RP 
full steps are carried out inside the integration interval irrespective of the error tolerance used. 
In the ode45 algorithm, four points (instead of one) are reported for each Runge-Kutta 
integration step. The additional points are calculated by cubic Hermite interpolation to the 
values and slopes computed at the ends of the step. 
  The results reported in the previous section were obtained by the RKF45 algorithm 
using 100 integration steps, while the ode45 algorithm executed only 28 steps and reported the 
results in 112 points. If the relative error tolerance is reduced to RelTol = 10-6 (the same as the 
RKF45 default value), ode45 yields the same results that are shown in Figure 1 using 42 
integration steps.  Thus, in this case, incorrect results were caused by inadequate error 
tolerance. But one must question why the default error tolerances, which are sufficient for most 
problems (according to the developers' experience), are too large for this particular problem. 
  To further investigate this point, the Jacobian matrix of the ODE system can be 
calculated. Let us rewrite the system of ODEs (presented in Table 1) in the following form 
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The matrix of partial derivatives (Jacobian matrix) can be defined 
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The eigenvalues of the Jacobian matrix can provide indication regarding the stiffness of the 
problem. An indicator recommended by Rice and Do[11] is the stiffness ratio, defined by 
equation (4) 
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where  iλmax  is a negative eigenvalue of the J  matrix with maximal absolute value and  

iλmin  is a negative eigenvalue of the J  matrix with minimal absolute value. When SR>1000 
the system of ODEs is considered a stiff system. 
   The elements of the Jacobian matrix can be also helpful in determining the upper 

bounds on the errors in the calculated values of the slopes ⎟
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propagation formula. Let δT, δXB  and δXC  be the truncation errors in the temperature, 
conversion of B and conversion of C respectively. Then, the upper bound on the error of the 
slope dT/dz, for example, is given by 
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   In Table 3 the elements of the Jacobian matrix, the eigenvalues, and the stiffness ratio 
values are shown for the initial point (z = 0) and the final point (z =8). The problem is not 
considered stiff by the commonly used measures as SR = 397.95 at the initial point and SR = 
27.87 at the final point. However, the partial derivative values associated with the calculation of 
the error ( )dzdT /δ  using equation (5) are very large. Introducing the numerical values at the 
final point, for example, yields 

( ) ( ) ( ) ( )CB XXTdzdT δδδδ 1791524.10/ ++=  
Thus, the error in the slope is larger by an order of magnitude than the error in the 
temperature, and by more than two orders of magnitude than the error in XB and XC.                   
  A comparison of the actual error in the temperature and its slope values was made by 
dividing the integration interval into 112 sections (according to the ode45 reporting points when 
the default error tolerance was used). The integration was carried out separately for the 112 
sections so that the variable values at the reporting points can be compared. The use of very 
small integration intervals ensured that the results obtained were accurate, so that the 
difference between the new and previously obtained results can be considered as the error in 
Tδ  or ( )dzdT /δ .  



  Figure 4 shows the errors in the calculated temperature values as function of the 
distance from the entrance to the reactor. The maximal deviations are approximately 0.8 K to -
0.8 K, thus the relative error is 0.8/670 ~ 0.001, which is consistent with the specified relative 
error tolerance. In Figure 5 the errors in the dT/dz values are shown. Those errors are 
approximately ten times larger than the respective temperature value errors. This is consistent 
with the error propagation formula assuming that the errors δXB and δXC can be neglected. The 
temperature slope is gradually decreasing (in absolute value) when the reactor exit is 
approached. The value of dT/dz = -1 at about z = 3.8 and dT/dz = -0.227 at about z = 8.  
Considering that the error at some point reaches a value close to 8 implies relative errors over 
2000%.  
  In order to assess the role of the interpolation used in ode45  for increasing the number 
of reported points, the calculation of the error in the temperature values was repeated after 
removing the points that were obtained by interpolation. The resultant plot is shown in Figure 6. 
A comparison of Figure 6 with Figure 4 reveals that removal of the interpolated points almost 
completely eliminated the positive deviations; thus the interpolation is responsible for about 
half of the amplitude of the oscillation cycle. 
 

Aerobic Microbial Growth Problem – A Stiff Example (Brauner et al.[3]) 
 
  The system of equations representing example problem 2 is shown in Table 4. There 
are three differential equations representing the concentration of the cells (x), the substrate (S) 
and oxygen (O2) in a microbial growth system. The model equations and the comments, 
shown in the Table, provide a complete documentation of the problem.  The format of the 
model is consistent with Polymath. 
  In this case there are substantial differences between the oxygen concentration profiles 
obtained with the RKF45 algorithm of Polymath and the ode45 function of MATLAB when the 
default error tolerances are used. The solution obtained by the RKF45 algorithm (RelTol = 10-

6) is a smooth curve as can be seen in Figure 7. The oxygen concentration changes are very 
small in absolute values. At the start, the concentration decreases from the initial value of 8 
mg/l to 7.9975 mg/l, then increases gradually to a maximum of 7.998778 mg/l and decreases 
again gradually to a minimum value of 7.99371 mg/l at time  t= 6 h 25 min. Shortly after this 
time all the substrate is consumed and the concentration of the oxygen returns to the initial 
value of 8 mg/l. 
  The solution obtained with the ode45 function is oscillatory, as shown in Figure 8, with 
deviations of up to 0.008 mg/l (or -0.008 mg/l) from the correct values. It should be pointed out 
that the maximal deviations are larger than the maximal change in the oxygen concentration 
(0.0063 mg/l). To investigate the cause of the oscillation, the Jacobian matrix of the system of 
equations and its eigenvalues have been calculated. These values are shown in Table 5 at the 
initial point (t = 0) and at the point where all the substrate is consumed (t = 6.5 h).  It can be 
seen that the system is stiff (the stiffness ratio SR = 9900 at t = 6.5 h, for example). To check 
whether the oscillations can be attributed to the stiffness, the problem was resolved using the 
explicit ode45 function, after reducing the relative error tolerance to RelTol = 10-6. 
  With the reduced error tolerance, the correct solution shown in Figure 7 was obtained. 
Thus, the explicit Runge-Kutta algorithm with adaptive step-size control is shown to yield 
correct solutions to stiff systems, provided that adequate error tolerances are specified.  Of 
course, an explicit algorithm is very inefficient in solving stiff problems. The ode45 function 
used 1220 steps to obtain the correct solution of this problem, while the stiff ode23s algorithm 
used only 57 steps. 



  The propagated error in the slope of the oxygen concentration δ(dO2/dt) can be 
calculated using the terms of the Jacobian matrix at t = 6.5 h. 

( ) ( ) ( ) ( )2400143.1627658.0/2 OSxdtdO δδδδ ++=  
  Thus, the upper limit of the absolute error in the slope is 400 times the error in the 
oxygen concentration: 3.2 mg/l-h.  Considering that the value of dO2/dt is in mostly in the 
range of 10-3 – 10-5, the relative errors reach very large values. 
 

Conclusions 
 
  The cause of erroneous oscillatory behavior when solving systems of ODE’s with state-
of-the-art software has been investigated. This oscillatory behavior may result from the use of 
inappropriately large error tolerances. Depending on the terms of the Jacobian matrix, small 
errors in the variable values may lead to very large relative errors in the derivative values. 
These errors cause the erroneous oscillations. 
  The oscillations can be prevented by monitoring the errors in the derivative values and 
restarting the integration with smaller error tolerances when the error in the derivatives 
exceeds a certain limit. 
  The two examples considered in this work show that the use of an explicit integration 
algorithm for a stiff system does not necessarily cause erroneous oscillatory behavior provided 
that adequate error tolerances are specified. The adaptive step change algorithms of the 
explicit methods can provide correct solutions also for stiff systems at the expense of much 
lower efficiency than that achieved with stiff algorithms. 
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Table 1.  Mathematical Model for the Tubular Reactor Example 
 

Line Equation, #Comment 
1 d(Temp)/d(z) = B2 * RB + B3 * RC – B4 * (Temp – Tj) # Temperature in the reactor [K] (energy balance) 
2 d(XB)/d(z) = B1 * RB # Conversion to phthalic anhydride (mol balance) 
3 d(XC)/d(z) = B1 * RC # Conversion to CO and CO2 (mol balance) 
4 G = 4684 # Superficial mass velocity [kg/m^2-h] 
5 MM = 0.02948 # Mean molecular weight [g/mol] 
6 NA0 = 9.27e-3 # Inlet mole fraction of o-xylene 
7 N0 = 0.208 # Mole fraction of oxygen 
8 CP = 0.25 # specific heat [kcal/kg K] 
9 H1 = -307 # Heat of reaction A -> B [kcal/mol] 
10 H3 = -1090 # Heat of reaction A -> C [kcal/mol] 
11 RHOB = 1300 # Catalyst bulk density [kg/m^3] 
12 DP = 3e-3 # Catalyst particle diameter [m] 
13 U = 82.7 # Heat transfer coefficient [kcal/m^2-h-K] 
14 DT = 0.025 # Tube diameter [m] 
15 R = 1.897 # Gas constant [cal/mol-K] 
16 Tj = 660 # Cooling jacket temp. [K} 
17 B1 = RHOB * MM / (G * NA0) # Combined terms in the mole balance eqs. 
18 B2 = RHOB * (-H1) / (G * CP) # Combined terms in the energy balance eqs. 
19 B3 = RHOB * (-H3) / (G * CP) # Combined terms in the energy balance eqs. 
20 B4 = 4 * U / (G * CP * DT) # Combined terms in the energy balance eqs. 
21 XA = XB + XC # Conversion of o-xylene 
22 NA = NA0 * (1 – XA) # Mole fraction of o-xylene 
23 NB = NA0 * XB # Mole fraction of phtalic anhydride 
24 K1 = 1000 * exp(-27000 / (R * Temp) + 19.837) # Kinetic constant of the 1st reaction [kmol/kg(cat) – h] 
25 K2 = 1000 * exp(-31400 / (R * Temp) + 20.86) # Kinetic constant of the 2nd reaction [kmol/kg(cat) – h] 
26 K3 = 1000 * exp(-28600 / (R * Temp) + 18.97) # Kinetic constant of the 3rd reaction [kmol/kg(cat) – h] 
27 RA = -(K1 + K3) * NA * N0 # Rate of reaction of o-xylene [kmol/kg(cat) – h] 
28 RB = K1 * NA * N0 – K2 * NB * N0 # Rate of generation of phtalic anhydride [kmol/kg(cat) – h] 
29 RC = K3 * NA * N0 + K2 * NB * N0 # Rate of generation of CO and CO2 [kmol/kg(cat) – h] 
30 XB(0) = 0 # Initial conversion to phtalic anhydride 
31 XC(0) = 0 # Initial conversion to CO and CO2 
32 Temp(0) = 650 # Initial temp. in the reactor [K] 
33 z(0) = 0 
34 z(f) = 8 # Reactor length [m] 

 
Table 2. Principal Results for the Tubular Reactor Example 

 
  Initial Minimal Maximal Final 
  Value Value Value Value 

z (m) 0 0 8 8 
Temp. (K) 650 650 687.0774 662.2154 
NA (kmol/h) 0.00927 0.0002977 0.00927 0.0002977 
NB (kmol/h) 0 0 0.0066834 0.0066026 
NC (kmol/h) 0 0 0.0023697 0.0023697 

 



Table 3. Jacobian Matrix and its Eigenvalues for the Tubular Reactor Example 
 

  Initial Point (z = 0) Final Point (z = 8) 
  Jacobian Matrix Eigenvalues Jacobian Matrix Eigenvalues

1 -7.2597 -101.15 -117.9 -7.1373 -10.382 -152.35 -179.43 -10.374
2 0.0073076 -0.23394 -0.2169 -0.36324 -0.000397 -0.35528 -0.3278 -0.029479
3 0.0008886 -0.007886 -0.0249 -0.017935 0.0007814 -0.01106 -0.0386 -0.37226

SR    397.95  27.87
 

Table 4. Mathematical Model of the Aerobic Microbial Growth System 
 

Line Equation, #Comment 
1 d(x)/d(t) = mju * x # Cell concentration [g/liter] 

2 
d(S)/d(t) =  If (S > 0) Then (-(mju * x) / Yxs - m * x) Else (0) # Substrate concentration 
[g/liter] 

3 
d(O2)/d(t) = KLa * (O2star - O2) - mju * x / Yxo2 - mo2 / x # Oxygen concentration 
[mg/liter] 

4 Ks = 0.05 # Constant [g/liter] 
5 mjumax = 0.6 # Constant [1/h] 
6 mju = mjumax * S / (Ks + S) 
7 Yxs = 0.5 # Constant [g-cells/g-glucose] 
8 Yxo2 = 1 # Constant [g-cells/g-O2] 
9 m = 0.08 # Constant [g-glucose/g-cells-h] 
10 KLa = 400 # Constant [1/h] 
11 mo2 = 0.1 # Constant [g-O2/g-cells-h] 
12 O2star = 8 # Constant [mg/liter] 
13 t(0) = 0 
14 t(f) = 10 # Final time [h] 
15 x(0) = 0.1 # Initial cell concentration [g/liter] 
16 S(0) = 10 # Initial substrate concentration [g/liter] 
17 O2(0) = 8 # Initial oxygen concentration [mg/l] 

 
Table 5. Jacobian Matrix and its Eigenvalues for the Aerobic Microbial Growth System 

 
  Initial Point (t = 0) All Substrate Consumed ( t = 6.5) 
  Jacobian Matrix Eigenvalues Jacobian Matrix Eigenvalues

1 0.59701 2.97E-05 0 -400 0.281 16.143 0 -400
2 -1.274 -5.94E-05 0 3.9805E-06 -0.64199 -32.29 0 -31.965
3 9.403 -2.97E-05 -400 0.59695 -0.27658 -16.14 -400 -0.040402

SR     9900
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Figure 1. Temperature Profile in the o-xylene Oxidation Reactor (Obtained by the Polymath 

RKF45 Algorithm) 
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Figure 2. Flow Rate Profiles of the Reactant and the Product in the o-xylene Oxidation 
Reactor (Obtained by the Polymath RKF45 Algorithm) 
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Figure 3. Temperature Profile in the o-xylene Oxidation Reactor (Obtained by the MATLAB 

ode45 Algorithm) 
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Figure 4. Error in the Calculated Temperature Values (ode45 function, RelTol = 0.001) 
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Figure 5. Error in the Calculated dT/dz Values (ode45 function, RelTol = 0.001) 
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Figure 6. Error in the Calculated Temperature Values (ode45 function, RelTol = 0.001, 
Interpolated Points Removed) 
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Figure 7. Oxygen Concentration Profile in the Aerobic Microbial Growth System (Obtained 
by the Polymath RKF45 algorithm) 
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Figure 8. Oxygen Concentration Profile in the Aerobic Microbial Growth System (Obtained 
by the MATLAB ode45 algorithm) 


