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Abstract 
 

            
Although it was first noted over 40 years that the combination of an energetic reaction 

and heat transfer at the wall may result in a great enhancement or a modest attenuation of the 
convective heat transfer coefficient, this behavior appears to have gone unmentioned in 
textbooks and handbooks on either reaction engineering or heat transfer 

New detailed and coherent and numerical solutions that take radial diffusion of 
momentum, energy, and species into account confirm the validity of the enhancements and 
attenuations and in addition reveal that the enhancement may vary chaotically along the 
length of the reactor. This seemingly anomalous behavior is explained by means of a semi-
theoretical  model,  by examination of the longitudinal wall-temperature profile,   and by 
examination of the radial profile of the temperature within the fluid..  

 
                                                  Introduction 
 
When gas-phase chemical reactions are carried out in steady flow through a tube, 

heating at the outer surface may be necessary to initiate the reaction. If the reactions are 
endothermic, heating may also be required to prevent premature self-quenching because of 
the resulting decrease in temperature. If the reactions are exothermic, cooling may be 
required to prevent a thermal run-away or undesirable side-reactions. A number of theoretical 
analyses and experimental investigations have revealed that energetic reactions may greatly 
enhance or mildly attenuate the rate of heat exchange as characterized by the Nusselt 
number. Unfortunately, these prior investigations of combined reaction and convection are 
fragmentary and incoherent, and have generally been overlooked in the literature of both heat 
transfer and reaction engineering.  

The  objective of the long-term investigation, of which the current work is a part, is to 
evaluate the validity of the several idealizations such as plug flow that are so prevalent in 
reaction engineering. The limited objective herein is to evaluate the validity and scope of the 
afore-mentioned enhancements and attenuations systematically and quantitatively by means 
of numerical solution of the differential equations of conservation, and, insofar as possible, to 
explain the results.  

   Attention herein is confined to heating or cooling by means of a uniform heat flux 
density on the wall of the tube. This has been the thermal boundary condition of choice in 
most of the prior theoretical analyses of convection because the mathematical formulation 
and the process of solution are then the simplest. Uniform heating at the wall can be closely 
approximated in practice by countercurrent heat exchange with a fluid in an outer annular 
passage, for example, by product-to-feed exchange. In the case of heating but not of cooling 
a uniform heat flux density may be attained in the laboratory by electrical resistance heating 
of the wall. Adiabatic reaction, the limiting case of a uniform heat flux density approaching 



zero may be approximated in practice by means of very good external insulation. An 
isothermal reaction corresponding to a negligible heat of reaction and no heat transfer at the 
wall serves as a reference condition for the effectiveness of heat transfer in compensating for 
the heat of reaction.  

The other common thermal boundary condition, namely a uniform-wall temperature, 
which can be closely approximated by means of an external condensing fluid (for cooling) or 
boiling fluid (for heating) is the subject of a complementary study in progress by Yu and 
Churchill1. A third thermal boundary of practical interest is that of imperfect external 
insulation in series with natural convection and thermal radiation.    

     Modeling and numerical solution for chemical conversions with or without heat 
exchange are more difficult than the for pure convection because most chemical conversions 
involve multiple reaction mechanisms of various orders, most of which are reversible, each 
of which depends exponentially and differently on temperature, and many of which are non-
equimolar, thereby  perturbing the flow. The general model for combined reaction and heat 
transfer consists of a set of partial differential equations for the conservation of species that 
are nonlinear in temperature and generally in concentration. These partial differential 
equations for the conservation of species are strongly coupled with those for the conservation 
of energy as well as with each other. The number of significant rate mechanisms, 
independent chemical species, and the numerical parameters associated with the rate 
mechanisms may exceed 100, 20, and 50, respectively.  This is to be contrasted with pure 
convection, which may be modeled by a single linear partial differential equation, a single 
dependent variable (the temperature) and three parameters (the Reynolds number, the Prandtl 
number, and the mode of heat transfer at the wall) insofar as the flow is fully developed and 
variation of the physical properties with temperature may be neglected. Fully developed 
convection is a very useful simplifying concept but, in general, the equivalent concept does 
not exist for chemical conversions or for combined convection and reaction. 

     Even apart from reduction of the complexity of the modeling and the process of 
numerical solution, gross simplifications are essential if the numerical results are to be 
interpreted and generalized. Four major simplifications are made for those reasons. The first 
of these is the postulate of fully developed laminar or turbulent flow; both entrance effects 
and transitional effects due to changes in the temperature are thereby excluded from the 
analysis. The error due to this idealization hinges on the rate of reaction relative to the rate of 
flow, increasing with this ratio. The second simplification is the postulate of invariant 
physical properties other than the rate constant(s) for the reaction(s). Taking the variations in 
density, viscosity, diffusivity, and heat capacity with temperature and composition into 
account would greatly complicate the calculations because the differential momentum 
balance is then coupled to those for energy and species, and these several differential 
equations must be solved simultaneously. Also, the numerical results would then be specific 
to a particular reacting fluid. The small errors in Nu and Zm that result from the idealization of 
invariant physical properties could perhaps be reduced by using mean values, but this was 
not done herein. The third simplification is the postulate that the reaction starts at the 
entrance, which is difficult to achieve experimentally. The fourth and most far-reaching 
simplification is the postulate of a single, first-order, equimolar, irreversible, homogeneous 
reaction, thereby minimizing the number of chemical-kinetic parameters. The combination of 
these four simplifications excludes changes in the radial and longitudinal velocity. The effect 
of temperature on the reaction-rate constant(s) is taken into account, although somewhat 
approximately.  

In previous related work, Churchill and Yu2 carried out numerical solutions for the 
conversion for representative cases of reaction with heat transfer, and had some success in 



devising algebraic expressions for prediction of the chemical conversion by deriving and 
utilizing asymptotic solutions as guidelines. Also, Churchill3 derived an analogy between 
homogeneous chemical reactions and heat transfer. The results of these two analyses are 
utilized herein.  

 
Prior work on enhancement and attenuation of convection due to reaction 
 
     The earliest studies of combined reaction and external heat transfer are apparently 

those of Brian and Reid4 and Brian5 who carried out analytical solutions for asymptotic 
conditions (chemical equilibrium in the bulk of the fluid and a vanishingly small temperature 
difference) in the turbulent regime of flow and for uniform wall temperatures. They 
generalized their results to some extent by expressing their model in terms of partial 
derivatives of the kinetic expression. The heat transfer coefficient was predicted to be 
enhanced by as much as a factor of 50. Subsequent solutions of Rothenberg and Smith6 for 
laminar flow and uniform heating predicted lesser but nevertheless significant enhancements.  
Ooms et al.7 carried out finite-difference solutions for first-order, irreversible, endothermic 
reactions in general, using penetration theory (which is of questionable accuracy as a model 
for turbulent transport) and thereby predicted enhancements of as much as a factor of 7 
depending on the values of Re, Pr, and Sc, as well as on three parameters representing the 
effects of the imposed heat flux density at the wall, the rate of reaction, and the heat of 
reaction. Experimental work on this subject is quite limited. Brian et al.8 carried out 
experimental measurements for a reversible reaction  (2NO2  ↔ 2NO + O2) with heat 
transfer, and Edwards and Furgason9 carried out both experiments and finite-difference 
computations to determine the effect of the exothermic gas-phase decomposition of ozone on 
the heat transfer coefficient. The latter investigators found attenuations of up to 27% in the 
heat transfer coefficient. All of this early work on the effect of chemical reactions on heat 
transfer appears to have been ignored in the literature of both reaction engineering and heat 
transfer. This omission may have occurred because the analyses are ancient and of 
questionable accuracy and validity, because the experimental data are fragmentary and 
incoherent, and because an explanation for the anomalous behavior has not been established 
on either physical or mathematical grounds, but a more likely explanation is that these 
investigations have simply been overlooked. 

 
A speculative relationship between reaction and convection 

Before presenting the new numerical solutions, it is expeditious to examine the afore-
mentioned new analogy between chemical reaction and convective heat transfer derived by 
Churchill3 because it provides guidance for the choice of variables for the numerical 
modeling and for graphical display of the numerical results.. . The analogy is based on the 
following exact solution derived by Churchill10 for a volumetrically uniform rate of reaction 
in fully developed laminar flow in a round tube with a uniform heat flux density at the wall, 
radial conduction, but no molecular diffusion: 
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Here Nu =2a jw/λ(Tw−Tm) and Q = aqv/2jw  is the ratio of the heat of reaction to the heat flux 
from the wall. The value of 48/11 may be recognized as the exact solution for fully 
developed convection without a reaction. It was thereupon speculated that Eq. (1) could be 



generalized to encompass developing convection and reaction and both laminar and turbulent 
flow. The resulting expression is 
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Here Nux ≡ 2a jw/λ(Twx−Tmx) is the local Nusselt number at axial distance x from the inlet,  
Nuxo is its value for no reaction, Qx  is the local ratio of the heat of reaction to the heat flux 
density at the wall per unit differential length of reactor, and β is the arbitrary coefficient in 
place of 3/11. For the laminar regime, Nuxo is given by the well-known series solution of 
Graetz 11

, but is perhaps more readily evaluated for laminar as well as turbulent flow by 
means of the numerical algorithm used herein to evaluate Nux. For a uniform heat flux 
density at the wall  
 
                                                      Qx = (kemx/k0)ξ(1−Zmx)                                                        (3)  
                                                                                      
Here, Zmx is the mixed-mean conversion, kemx/k0  is the ratio of the effective-mean value of the 
reaction-rate constant with respect to both length and radius to its value at the inlet 
temperature T0, and ξ ≡ τRePrK0a/4J is a combination of the specified parameters, namely 
the thermicity τ = QM/cMT0 , the dimensionless heat flux density J =a jw/λT0, the Reynolds 
number Re = 2aumρ/μ, the Prandtl number Pr =cμ/λ, and the dimensionless rate of reaction at 
the inlet K0a = k0a/um.  
            Approximation of the effective-mean value of the reaction-rate by its value at the 
mixed-mean temperature leads to  
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An energy balance over the reacting fluid from the inlet to any length x can be expressed as  
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Here, K0x = k0x/um is the dimensionless axial distance through the reactor. The second and 
third terms on the right-hand side of both forms of Eq. (11) represent the contributions of 
reaction and heat exchange, respectively, to the mixed-mean temperature. 

Equations (2) – (5) can be combined to eliminate Qx, kemx/k0, and Tmx, thereby 
obtaining   
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Eq. (6) is uncertain functionally by virtue of the speculative adaptation of Eq. (1) for 
developing reaction and heat transfer and numerically by virtue of the approximation of 
kemx/k0 by Eq. (4). 

Eq. (6) constitutes an expression for heat transfer, as represented Nux, and reaction, as 
represented by Zmx, and thereby can be interpreted as an analogy. In order to implement Eq. 



(6) a value or expression for Zmx is required. Churchill and Yu2 proposed and tested several 
empirical expressions for the prediction of the fractional conversion as a function of K0x, τ, 
and J for the nearly the same set of conditions as considered herein. The most convenient of 
these expressions is:          
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Their recommended values for the coefficients α, χ, and σ are listed in Table 1. Eq. (7) is of 
limited accuracy but the consequent error is reduced in the prediction of Nux. 

 

                    Table 1. Recommended Empirical Coefficients for Eq. (7) 

    

 

 

Eq. (7) could be used to eliminate Zmx from Eq. (1), resulting in an expression for Nux as a 
function only of K0x, but at the price of the inclusion of the uncertainty associated with Eq. 
(7) and of a loss in clarity.                                                 

Expectations based upon the analogy 

          Insofar as Eq. (2) is valid, enhancement and attenuation of Nux are characterized by the 
product βQx, not by Qx and β, separately. They are identified individually here because Qx is 
a dimensionless combination of specified quantities, whereas β is merely an empirical 
coefficient. Enhancement occurs only when β and Qx have opposite signs, and extreme 
enhancement occurs only when their negative product approaches unity. Ordinarily, Qx is 
negative, corresponding to the combination of an exothermic reaction and compensatory 
removal of heat at the wall, or to the combination of an endothermic reaction and 
compensatory heat input at the wall, but positive values of Qx are physically possible.       
According to Eq. (3),  Qx would be expected to decrease and approach zero with axial length 
owing to the increase  in Zm, but this increase may be counterbalanced to some degree if Tmx   
and thereby kemx increase, or abetted if Tmx  and thereby kemx decrease.  

          Ideally, β would be invariant with respect to ξ and to K0x, but that is hardly to be 
expected owing to the conjectural extension of Eq. (1) to Eq. (2). Churchill3 found the 
variance with ξ to be relatively constrained but different in the laminar and turbulent regimes, 
and the variance with Kx0 to be relatively constrained in both regimes. Accordingly, Eqs. (2) 
and (6) are very useful in a qualitative sense, that is in terms of understanding, and as a 
structure for correlation, but of limited value for a priori predictions.  

          Insight as to the enhancement and attenuations also follows from the definition of Nux 
in that for a fixed heat flux density at the wall, the value of Nux varies inversely with the 
numerical difference between Tmx and Twx, and a precipitous enhancement implies a rapid and 
close approach of these latter two values as x varies. Values of Tmx are readily predicted by 
means of Eq. (5) but an equivalent expression does not exist for Twx. However, it can be 
related to Nux, Tmx, and J through the definition of Nux rearranged as  

Condition α χ σ  
Re = 400, Pr =0.70, Sc = 0.2 0.937 3.96 0.710 

          Re = 37640, Pr =0.70, Sc = 0.2 0.988 3.73 0.00585 
Approximation for all Re,  Pr =0.70, Sc = 0.2 0.963 3.85 252/Re 
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Eq. (8) can in turn be rearranged for convenience as: 
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Eq. (8A) is exact for a uniform heat flux density. 

 
Numerical calculations 

 Methodology 
  The partial differential expressions for the conservation of energy and of species A 

were integrated numerically by means of finite-differences to determine T and Z as functions 
of r/a and K0x.The quantities  Tmx/T0, Twx/T0, Nux, Zmx  and kemx/k0  were in turn computed as 
functions of Kx0 alone. The illustrative numerical calculations were carried out for the 
following representative parametric conditions: T0 = 300K, k = exp{20.145 – (5344.5/T)}, Re 
= 400 and 37640, Pr = 0.7, Sc = 0.2, and K0a = 0.096. It follows from the first two of these 
numerical values that k0 = 10.278s-1. The model of Churchill and Zajic12, which incorporates 
semi-empirical expressions for τρ /''vu− and Prt, was utilized for radial transport of 
momentum, energy, and species by the turbulent fluctuations. The following empirical 
expression was utilized for the turbulent Prandtl number, which is a parameter in that model:  

 

                                                   Prt = 0.85 + 
Pr
015.0                                                          (9) 

 
Eq. (8) with Sc substituted for Pr was utilized for Sct. Complete calculations were carried out 
for a number of combinations of τ, J, and Re, as described next. 
 
Conditions for numerical integrations  

The differential mathematical model was solved numerically for the previously 
indicated fluid-mechanical, thermal, and chemical conditions. For laminar flow (Re = 400), 
calculations were carried for all combinations of τ = −0.01 and −0.05 with J = 0.05 and 0.10, 
as well as for all combinations of τ = 0.01 and 0.05 with J = −0.05 and −0.10. For turbulent 
flow at a+ =1,000 (Re= 37,460), calculations were carried out for all cases of τ = ±0.01 and 
±0.05 with J = ±0.15, ±0.20, ±5.0, and ±10 that involve opposite signs. The reaults were 
tabulated for the following values of K0x: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, and 10  

                 The local Nusselt number for pure convection without reaction, Nuxo, serves as a 
quantitative basis for evaluation of the enhancement or attenuation of heat transfer by an 
energetic reaction. Calculating a sufficient number of eigenvalues and eigenfunctions in the  
aforementioned solution of Graetz11 and then summing the series is very tedious. On the 
other hand, the same scheme of numerical integration as devised in the current work for 
combined reaction and convection in both laminar and turbulent flow requires considerably 



less computation and predicts not only the Nusselt number but the entire two-dimensional 
field of temperature and composition with more than sufficient accuracy.  

 
      Computed values of the local Nusselt number for no reaction 

Representative values of Nuxo as so-computed for both laminar and turbulent flow 
with no reaction are listed in Table 2 as a function of K0x. The customary independent 
variable for pure laminar convection is Gz = wc/λx = πK0aRePr/2K0x = πaRePr/2x. A third 
possible independent variable is x/a = K0x/K0a. For specified values of Re, Pr, and K0a, the 
three independent variables K0x, Gz, and x/a bear a one-to-one correspondence. K0x was 
chosen as the primary independent variable herein because of its common use in chemical 
reactor engineering and its commonality for both laminar and turbulent flow.   
                                     
        Table 2. Local Nusselt Numbers in Developing Convection with Uniform Heating 
 
 

 

 

 

 

 

  

 

                Tests of the accuracy of the values of Nux obtained by numerical integration  

The accuracy of the various values obtained by step-wise numerical integration of the 
partial-differential model was tested in several ways. 

1) Convergence was tested in general by decreasing the step-sizes in radius and axial 
length. 

2) The accuracy of the results for Nuxo in Table 2 for non-reactive laminar flow was 
tested by comparison with the prior numerical compilations of the Graetz series, as 
well as with the limiting exact value of 48/11. 

3) The accuracy of the numerical results for Nu{Kxo}for non-reactive turbulent flow for 
Re = 37640 and Pr = 0.7 was tested by comparison with the prior numerical solutions 
of Yu et al.13, including the limiting value of 86.10 for Gz → ∞. … 

4) The accuracy of the numerically computed values of Nu for non-reactive turbulent 
flow and convection was tested by comparison with those of Churchill and Zajic12.  

5) The compatibility of the computed values of Tmx/T0 and Zm was tested in terms of Eq. 
(5). 

6) The compatibility of the numerically computed values of Nux, Twx/T0 and Tmx/T0 was 
tested in terms of Eq. (8A). 

K0x Nulam Nuturb  K0x Nulam Nuturb   K0x Nulam Nuturb 

0.01 22.14 250.9  0.09 10.62 141.0    0.80 5.584 102.1 

0.02 17.53 204.3  0.10 10.27 138.1    0.90 5.432 100.8 

0.03 15.29 182.7  0.20 8.239 122.3    1.00 5.306 99.75 

0.04 13.89 169.6  0.30 7.286 115.1    2.00 4.687 93.87 

0.05 12.89 160.5  0.40 6.702 110.7    5.00 4.401 89.49 

0.06 12.14 153.9  0.50 6.299 107.7  10.00 4.3854 88.68 

0.07  11.54 148.7  0.60 6.001 105.4  20.00 4.3852 88.63 

0.08 11.04 144.5  0.70 5.769 103.6     ∞ 4.3636 86.10 



The numerical accuracy in each instance was found to be more than sufficient for all 
practical purposes.  
 

Numerical results for developing reaction and convection in laminar flow 

The computed values are too extensive to be presented here in full numerical detail 
for all conditions. Furthermore representative values have been presented by Churchill3. 
Instead, because of the functional insight provided thereby, the results are presented 
primarily in graphical form or by reference to Eq. (6).  

 
Tabular representations 
           The aforementioned tabulations of numerically computed values by Churchill3 reveal 
that in the laminar regime the values β vary only moderately with τ and J for a given value of 
K0x, and only moderately with K0x for a fixed value of τ and of J. These variations, which 
were to be expected because of the speculative origin of Eq. (3) and the several 
approximations made in its implementation as Eq. (6), suggest that the analogy is useful in a 
qualitative but not a quantitative sense.  That is,  it provides  insight  but  not  numerically  
accurate   predictions.  .Similar results were obtained for the turbulent regime but the values 
of β differed significantly from those for the laminar regime, indicating that the functional 
dependence on Re per ξ is not exact. 

 

Graphical representations  
            The mixed-mean conversion for several combinations of values of τ and J is plotted 
versus K0x in log-log coordinates in Fig. 1, and the local Nusselt number for several 
conditions in Fig. 2, in all cases for K0a = 0.096, Re = 400, Pr = 0.7, and Sc = 0.2. Curves for  
a non-energetic reaction (τ = 0) are included as a condition of reference. The effects of the 
thermicity and of the heat transfer at the wall on the conversion are only second-order for the 
chosen conditions. By contrast, the local Nusselt number for some of the same and some 
different conditions is seen to be enhanced for all values of K0x for all of the chosen 
thermicities, and grossly and chaotically for τ = −J = 0.05. It may be noted that the inverse 
condition, that is τ = −0.05 and J = 0.05, as well as τ = 0.05 and J = −0.10, produce a single 
strong maximum in Nux, but that none of the other chosen combinations other than τ = −J = 
0.05 produced any vestige of chaotic behavior.  

 
Numerical results for developing reaction and convection in turbulent flow 

The conversion in turbulent flow is even less dependent on the thermicity and heat 
flux density at the wall than in laminar wall and therefore is not illustrated here. Since Eqs. 
(2) – (8) remain directly applicable, similar behavior to that for laminar flow might be 
expected for the effect of an energetic reaction on convection in turbulent flow. That proves 
to be the case qualitatively but not quantitatively. Fig. 3, which displays results for a+

 = 1000 
(Re = 37,640) reveals strong chaotic attenuation as well as enhancement  of the local Nusselt 
number. Since ξ is negative, that is τ and J have opposite signs for all of these conditions, 
attenuation implies a negative value of β. 
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                                  Figure 1. Mixed-mean Conversions in Laminar Flow 
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         Figure 2. Local Nusselt Number for Laminar Flow with an Energetic Reaction 
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         Figure 3. Local Nusselt Number for Turbulent Flow with an Energetic Reaction                   

 Explanations for the Enhancement of the Nusselt Number by an Energetic Reaction    

            The explicit objective of this investigation was to confirm and improve on   the 
accuracy of the previous predictions and observations of enhancement and attenuation of   
the Nusselt number by an energetic reaction. This can be said to have been accomplished by 
the computed values, some of which are illustrated in Figs. 2 and 3. A second implicit 
objective was to explain this seemingly anomalous behavior. Three approaches follow. 
 
An Explanation in Terms of the Analogy 
            Eq. (2) provides a mathematical explanation for enhancement by virtue of a negative 
value of the product βQx, for extreme enhancement by virtue of the product βQx approaching 
− 1, and for attenuation by virtue of a positive value of βQx. Furthermore, Eq. (3) provides an 
explanation for multiple peaks in Nux in that Qx, by virtue of its proportionality to 1−Zmz, 
decreases with K0x, but this decrease may be counterbalanced by an increase in kemx/k0. These 
possibly competing effects open the door to multiple peaks in Nux even if β were invariant 
with respect to K0x. Indeed, Churchill3 demonstrated that an empirical linear correlation of β 
with K0x can closely reproduce the variation of Nux with K0x even for τ = −J = 0.05, the 
condition that generated the extreme curve in Fig. 2. The representation of the enhancement 
by Eq. (2) is not, however, a physical explanation in that this expression has a conjectural 
origin.  
 
An Explanation in Terms of the Mixed-mean and Wall Temperatures 
          An alternative source of explanation is the definition of Nux, namely Eq. (8), from 
which it follows that  
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and that  
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The quantity (Twx−Tmx)o can thus be computed from the specified value of J and the 
independently computed value of Nuxo. As previously mentioned, there is no expression for 
the prediction of the wall temperature. Although Twx is computed in the process of solving 
the differential energy balance numerically and is required to calculate Nux. there is no 
expression for its prediction. Thus, Twx in Eq. (10) is analogous to β in Eq. (3) in that it must 
be calculated from Eq. (8) and computed values of Nux. 
          Numerically calculated values of Twx and Tmx for laminar flow are plotted versus K0x in 
Fig. 4 for four representative cases. The upper-left plot is for non-reactive flow and 
corresponds to Nuxo and the Graetz solution. The upper-right plot corresponds to nearly 
isothermal flow, that is to nearly perfect compensation for the heat of reaction by the 
imposed heat flux,. The lower-left plot is for the condition that produced the strong chaotic 
enhancement in Fig. 2. The strong enhancement for this condition is associated with the 
nearness of the curves for Twx and Tmx, and the two peaks in Fig. 5 to the two near-
intersections of Twx and Tmx. The short range of values of Tmx below Twx is apparently due to  
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Figure 4. Longitudinal Temperature Profiles for Laminar Flow 

 



computational error. The moderately close approach in the lower-right plot for the converse 
case is in agreement with the strong non-chaotic enhancement that may be observed in Fig. 3. 
It should be noted that the scale of the ordinate differs in these plots. 

            Numerically calculated values of Twx and Tmx for turbulent flow are plotted versus K0x 
in Fig. 5 for four representative cases. The upper-left plot is for non-reactive flow and 
corresponds to the numerically computed values of Nuxo in Table 2. The upper-right plot for τ 
= 0.05 and J = −0.1 results, as can be seen in Fig. 3, in a strong attenuation, but the 
abbreviated abscissa does not include the crossing of the curves required by the transition 
from attenuation to enhancement. (The range of the abscissa was restricted to values that 
might be utilized in practice.) The lower-left plot for τ = −0.01 and J = 0.15 is produces a 
moderate single-peaked enhancement in Nux, while the close approach in the lower-right plot 
for τ = −0.01 and J = 0.05 produces the strong double-peaked enhancement in Nux in Fig. 3.  
Again, the different scales of the ordinates in Fig. 4 should be noted. Although the plots of 
Twx and Tmx in Figs. 4 and 5 provide considerable insight they too fail to provide a physical 
explanation for the enhancements and attenuations.  
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Figure 5. Longitudinal Temperature Profiles for Turbulent Flow 
 
 

An Explanation in Terms of the Radial Temperature Profile 
            The most convincing physical explanation for the enhancement of Nux by an 
energetic chemical reaction is the preferential generation of the heat reaction near the wall  or 
preferentially near the centerline. In the instance of an exothermic reaction (and a positive 
thermicity) the radial temperature profile is skewed upward relative to that for no reaction. 
Such behavior is illustrated in Fig. 6 for laminar flow, τ = 0 and 0.05, K0x =1, J = −0.05, and 
the otherwise common conditions herein. The temperature may be noted to be skewed 



upward over the whole cross-section by the exothermic reaction. It is obvious by inspection, 
or by a mental integration that the difference between the mixed-mean temperature and the 
wall temperature is decreased by the reaction. The effect of cooling at the wall for a fixed 
thermicity is illustrated in Fig. 7 for J = −0.05 and −0.10 with τ = 0.05, and otherwise the 
same conditions as for Fig, 6. In the instance, a decrease in the rate of cooling increases the 
relative effect of the reaction and skews the radial temperature profile in much the same way 
as in Fig. 6, again reducing the difference between the mixed-mean temperature and the wall 
temperature, and in this instance enhancing the magnitude of Nux. However, as may be 
inferred from the upper curve, it is possible for Tmx to be less than Twx at some values of K0x 
(as in the lower left plot of Fig. 4, resulting a negative value of Nux even though the heat flux 
density is outward and dT/dr is negative at the wall. (The absolute values of Nux were 
actually plotted in Fig. 2 to avoid displaying this seeming anomaly.)The scale of the abscissa 
of Fig. 7 should be noted to differ from that of Fig. 6.  
            The rate of release of the exothermic heat of reaction is proportional to the rate of 
reaction which is dependent on the local composition and temperature. The conversion at any 
radius and axial distance is a consequence of these factors but primarily of the local velocity 
of the fluid. The fluid near the wall moves much more slowly than near the centerline and 
therefore may rise more rapidly in temperature and reach a higher temperature, other factors 
being equal. All aspects of this behavior vary with distance down the tube. For example, as 
the conversion near the wall approaches unity, the release of the heat of reaction will shift 
toward the centerline where the velocity is higher and the conversion is less. This explains 
the variation of the enhancement with length. These conclusions are applicable with proper 
modification for endothermic reactions and heating at the wall as well. Indeed, the behavior 
of Nux for all of the cases plotted in Figs. 2 and 3 can be deduced from the radial temperature 
profiles as a function of length.  
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Interpretation 
            The preferential release (or absorption) of the heat of reaction near the wall or near 
the centerline and the consequent skewing of the radial temperature profiles provides a 
physical explanation for enhancement and attenuation of the Nusselt number, including the 
sometimes  chaotic variation with distance through the reactor/exchanger. This explanation 
is, however, qualitative as contrasted with the analytical explanations provided by Eqs. (2) 
and (10). 

            It should be noted that the rate of heat transfer between the fluid and the wall in terms 
of jw or J is not enhanced or attenuated, only the Nusselt number. Furthermore, if the energy 
and material balances partial differential form are solved numerically as was done to obtain 
the values plotted and tabulated herein, the heat transfer coefficient and the Nusselt number 
are dependent not specified variables. Why then has the variation of the Nusselt number with 
the several dependent variables been sought herein? There are two primary reasons. The first  
is understanding; the Nusselt number gives insight into the complexity of the combined 
process of reaction and heat exchange that would otherwise not be realized, and indeed this 
interaction has been generally overlooked in the fields of both reaction engineering and heat 
transfer. The second reason arises from the conventional process of design for reactor/heat 
exchangers; such design calculations have traditionally been carried out with a lumped 
parameter model that incorporates a heat transfer coefficient. Such a model together with the 
conventional (non-reactive) correlations for the Nusselt number may yield predictions that 
are grossly in error.  

            Finally, it should also be noted that the postulate of plug flow, which is often made in 
modelling chemical reactors, excludes all of the very real effects of combined reaction and 
convection that are examined herein. This a further, if redundant, reason to abandon outright 
the very concept of plug flow, which occurs in the real world only for semi-solid materials 
such as ice cream pushed through a tube by a wooden rod. 

           

.  Summary and Conclusions 
 

            1. Prior numerical calculations and experimental work, although scattered and 
incoherent, suggest that heating or cooling the wall of a tubular reactor might produce 
orderly perturbations of the chemical conversion but irregular and extreme perturbations of 
the Nusselt number. These perturbations are unmentioned in the standard textbooks and 
handbooks on heat transfer and reaction engineering. 
            2. The coherent numerical results presented herein for a uniform heat flux density at 
the wall confirm that an energetic reaction may indeed produce great perturbations in the 
magnitude of the Nusselt number, as well as a highly irregular variation in the axial direction. 
(See Figs. 2 and 3.) It should be noted in this context (See Fig.1). that, even though the 
mixed-mean conversion is critically dependent on the local radial and longitudinal variations 
in temperature, its variation with axial distance does not echo the drastic excursions in the 
Nusselt number. 
           3. These results were obtained by finite-difference solution of the partial differential 
equations of conservation for energy and species for fully developed laminar and turbulent 



flow. The modelling is limited to a first-order irreversible equimolar reaction, a single, 
temperature-dependent reaction-rate constant, and single values of Pr and Sc. Numerical 
solutions for a uniform wall temperature will be presented in a separate paper in the interests 
of clarity.     
            4. If solutions of the partial differential equations for the conservation of energy and 
species are carried numerically, as they were in this investigation, the heat transfer 
coefficient and the Nusselt number do not appear in the model and their extreme and chaotic 
variation are only of intrinsic interest. However, if the reactor/heat exchanger is modelled in 
terms of ordinary differential equations with lumped parameters (for example, the mixed- 
mean velocity, composition, and temperature) the neglect of the enhancement and/or 
attenuation in the Nusselt number may lead to gross errors. 
           5. The common postulate of “plug flow” in reactor design excludes the enhancement 
and/or attenuation and thereby may also produce erroneous predictions for combined reaction 
and heat transfer. 
           6. An important aspect of the investigation was to explain the gross effects of an 
energetic chemical reaction on the Nusselt number. The search for such an explanation 
followed three different paths that each proved to have limitations.  
           First, the predictions of the recent new analogy devised in the course of the overall 
investigation were examined in this respect. Since the coefficient β was found to be relatively 
invariant for a wide range of conditions, Eq. (2) provides a rationalization and a theoretical 
structure for correlation of the magnitude and longitudinal variation of the enhancement and 
attenuation. However, because of its speculative origin, Eq. (2) does not provide a physical 
explanation, and because β is empirical, it falls it short of quantitative a priori predictions.  
           Next, Eq. (10), which is based on the difference between the mixed-mean and wall 
temperatures, was examined in terms of explanation and prediction.  The enhancement and 
attenuation can be explained or at least rationalized on the basis of the variation of this 
difference (see, Figs. 4 and 5), but the wall temperature is not predictable a priori. 
           Finally, the radial profiles of temperature were examined (see Figs. 6 and 7). These 
plots indicate that the preferential release or absorption of the heat of reaction near the 
centerline or near the wall is the root cause of the enhancement and attenuation. This is the 
sought-after physical explanation.   
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                                                         Nomenclature 

a          radius of tube, m 
a+           a(ρτw)1/2/ μ 
c          specific heat capacity, J/kg K  
CA       concentration of species A, J kg-mol / /m3  

CM         molar heat capacity, J/kg-mol K 
E         energy of activation, J/ kg-mol 
Df        diffusivity, m2/s 
Gz       Graetz number wc/λx = πK0aRePr/2K0x = πaRePr/2x 
jw         specified heat flux density at wall, W/m2 

J          specified dimensionless heat flux = ajw/λT0 
k          reaction–rate constant, s-1 



k∞        frequency factor for reaction mechanism, s-1 

K0a         dimensionless reaction-rate constant = k0a/um
 

K0x         dimnsionless distance from inlet =k0x/um 
Nu       Nusselt number = 2jwa/λ(Tw-Tm) 
Pr       Prandtl number = cμ/λ 
Prt       turbulent Prandtl number 
qM        molar heat of reaction, J/kg-mol 
qV            heat input from reaction per unit volume, J/m3 

Q         heat input from reaction/ heat flux at wall per unit length of reactor 
r          radial coordinate, m  
R         universal gas constant, J/kg-mol K 
Re       Reynolds number = 2aumρ/μ 
Sc        Schmidt number = μ/ρDf 
Sct       turbulent Schmidt number 
T         absolute temperature, K 
um        mixed-mean velocity, m/s 
u′         temporal fluctuation in u, m/s 

''vu      time-average of product of fluctuations in velocity, m2/s2 

++)''( vu dimensionless shear stress due to turbulence = -ρ ( )''vu /τ 
v          velocity component normal to wall, m/s 
v′         temporal fluctuation in v, m/s 
x          distance from inlet, m  
Z          fractional conversion of species A 
Greek symbols 
α         arbitrary coefficient in Eq (7) 
β         arbitrary coefficient in Eq. (2) 
γ          arbitrary coefficient in Eq. (7)  
λ          thermal conductivity 
μ          dynamic viscosity 
ξ          dimensionless collective parameter = τRePrK0a/4J 
ρ          specific density 
σ          arbitrary coefficient in Eq. (7)  
 τ          thermicity = qM/cMT0 = CA0qM/ρcT0; or shear stress,  
 χ          arbitrary coefficient in Eq. (7) 
Subscripts 
em      effective-mean 
m        mixed-mean 
o         for no reaction 
x         at distance x from let 
w        at wall 
0         at inlet 
 

 References  
 
 

1. Yu, Bo, and S. W. Churchill (2007), “Effects of Energetic Reactions on Forced    
      Convection in a Round Tube with a Uniform Wall Temperature”, in preparation. 

2.         Churchill, S. W., and Bo Yu (2006), “The Effects of Transport on Reactions in      



      Homogeneous Tubular Flow,” Ind. Eng. Chem. Res., in press 
3.        Churchill, S.W. (2006), “An Analogy between Reaction and Heat Transfer,” AIChE J., 
            in press. 
4.       Brian, P. L. T., and R. C Reid (1962), “Heat Transfer with Simultaneous Chemical    
            Reaction: Film Theory for a Finite Reaction Rate,” AIChE. J., 8, 322- 329.     
5.  Brian, P.L.T. (1963), “Turbulent Flow Heat Transfer with a Simultaneous Chemical   
            Reaction of Finite Rate,” AIChE J., 9, 831–840.    

   6.         Rothenberg, R. I., and J. M., Smith (1966), “Heat Transfer and Reaction in Laminar       
               Flow Tube,” AIChE J., 12, 213-220. 
   7.         Ooms, G., G. Groen, D. P de Graag, and J. F. Ballintijn (1978), “On Turbulent Pipe 

Flow with Heat Transfer and Chemical Reaction,” Proc. Sixth Int. Heat Transfer 
Conf., Hemisphere Publishing  Corp., Washington, DC, Vol. 5, 383-388. 

8. Brian, P.L.T., R. C. Reid, and S. W. Bodman (1965), “,” AIChE J., 11, 809 – 8   . 
   9.         Edwards, L. L., and R. R Furgason (1968),  “Heat Transfer in Thermally   
               Decomposing Ozone,” Ind.Eng. Chem. Fundam., 8, 441-445. 

10.       Churchill, S.W., (2005), “The Interaction of Chemical Reactions and Transport: I. An   
            Overview,” Ind. Eng. Chem.Res., 44, 5199-5212. 
11. Graetz L., (1883), “Über die Wärmeleitungsfahigkeit von Flüssigkeiten,” Ann. Phys. 

Chem., 18, 79–94.  

12. Churchill, S.W., and Zajic, S. C., 2002, Prediction of Fully Developed Convection 
with Minimal Explicit Empiricism. AIChE  J., 48, 927-940. 

13.       Yu, Bo,  H. Ozoe, and S.W. Churchill (2001), “The Characteristics of Fully  
Developed Turbulent Convection in a Round Tube,” Chem. Eng. Sci., 56 1781-1800 

 
 
 
 
 

 
    

 
 

 
 

 
   

   
. 

    
    
 
    
 

    
 


