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Abstract: Process simulations are more and more time consuming. One of the methods that 
allow reducing the computational time of an application is to distribute the workload onto 
several computers. In this paper, we present some techniques from parallel and distributed 
computing applied to CAPE-OPEN compliant dynamic process simulations. We have 
implemented a fully transparent easy-to-use prototype which noticeably reduces the 
computational time of an offshore production network while running on five computers. 
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Introduction 

 
 Process simulations become increasingly complex in terms of physico-chemical properties that 
unit operations can simulate. Plugging into process simulator complex unit operations from 
heterogeneous sources becomes essential. In order to do so, unit operations components have to match 
required interface specifications so that they can be easily integrated into legacy simulators. Since 
1995, the CAPE-OPEN standard, now maintained by CO-LaN (http://www.colan.org), offers business 
interface specifications to answer the need of interoperability between heterogeneous codes. The 
CAPE-OPEN standard addresses steady-state as well as transient simulations. 
 As a matter of fact, computer aided process simulations are more and more time consuming. 
Thus, process simulations can be regarded as a trade-off between accuracy and execution time. Given 
the fact that computational power is still a bottleneck to process simulations, accuracy is decreased to 
reach a whole acceptable computation time. A feasible solution that is well accepted in High 
Performance Computing is the use of cluster of workstations.  
 
 A cluster oriented architecture, also generically called distributed memory architecture, is 
defined as a collection of interconnected standalone computers (also called node) co-operatively 
working together as a single computing resource. Nevertheless, the implementation of efficient 
algorithms that exploit the overall computing power is difficult and generally requires computing 
knowledge. The need to parallelize codes becomes a reality while considering current personal 
computers with multi-core CPUs. 
 
 In this paper, we present an extension of the INDISS software from RSI that allows distributed 
execution of process simulations. This extension reduces the total execution time of a simulation and is 
completely transparent for the final user. Even though methods and concepts can be applied to any 
CAPE-OPEN compliant simulator, our extension is strongly coupled to the INDISS runtime. 
 Thanks to the CAPE-OPEN standard, running a simulation onto a cluster of PCs can be now 
fully automated without user interaction. Given a number of CAPE-OPEN compliant software 
components are seen as computational atomic entities, our approach aims at providing an optimal 
placement of such components to reduce the overall completion time, also called makespan. Although 
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this approach can be applied to any flowsheet, we test our computational environment on an offshore 
deepwater production network. This test case is especially instructive due to the complex modules (in 
terms of UOs and compositional thermodynamics) composing the flowsheet and the efficiency 
especially requires while evaluating transient simulations. 
 
 Previous works have studied and quantified the benefits to use parallel and distributed 
architectures. [1] reviews the first attempts of using supercomputers and we refer the reader to this 
paper for a historical view of parallel CAPE simulations. Nowadays, most works study parallel solvers 
based on frontal algorithms [4, 5]. Such works need an equation oriented approach either for the whole 
process flowsheet or for unit operation solving approaches. Some coupled works [2, 3] aim at 
providing matrix reordering to fully exploit a parallel solver. Although these works give good 
performance, most simulators do not yet implement equation-oriented approach. [6] presents 
simulation of dynamic processes on distributed memory architecture, addressing similar issues as our 
own work. The authors physically divide the process at points that naturally separate the overall plant 
into distinct subprocesses. Our implementation does not consider physical subprocesses but the 
process. It means that no specific knowledge about the process is needed: only computing issues are 
addressed. Nevertheless, both approaches are complementary. We may apply our implementation for 
each subprocess. 
 
 This work is the result of a partnership between IFP and INRIA. It aims at proposing a generic 
transparent easy-to-use framework to run distributed process simulations. Institut Français du 
Pétrole (IFP) is a French institute for research and industrial development, education, and information 
for the oil, natural gas and automotive industries. It is one of the major actors supporting the CAPE-
OPEN standard. Institut National pour la Recherche en Informatique et Automatisme (INRIA) is 
a public scientific and technological establishment. It aims to network skills and talents from the fields 
of information computer science and technology from the entire French research system. INRIA has 
strong knowledge in distributed computation. RSI takes part in this project by supplying experience 
and software in the area of process simulation. 
 
 The paper is structured as follows. The second section presents the CAPE-OPEN standard 
interfaces to run transient simulations. Section 3 introduces some of the main High Performance 
Computing concepts to reach and sustain performance. Then, we show how these concepts are 
implemented given process simulation issues. Section 4 shows experimental results given the dynamic 
computation of oilfield productions networks. Finally, conclusions and final remarks end the paper. 
 

Process Simulations using the CAPE-OPEN specification interfaces 
 
 Originally designed to manage steady-state simulations, the CAPE-OPEN standard has recently 
extended its set of interfaces to handle transient simulations. Although this kind of simulation might be 
solved using an equation-oriented approach, the CAPE-OPEN standard adopts an original method 
presented in this section. Steady-state simulations based on the sequential modular approach have been 
presented in [12]. 
 
CAPE-OPEN Main Abstractions 
 In order to specify a process flowsheeting, the CAPE-OPEN standard defines a so-called 
Process Modelling Component (PMC). PMCs gather all functional business entities that might take 
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place in a simulation run. Two essential PMCs are (i) the Unit Operation component and (ii) the 
Physical Property Package which aggregates several components with same properties. The Unit 
Operation (UO) component exposes the ICapeUnit interface, which gives access to all functions that 
UOs perform in a CAPE-OPEN simulation. The Physical Property Package mainly exposes the 
ICapeThermoPropertyPackage which handles thermodynamic calculations. Apart from these two 
PMCs, the concept of MaterialObject has been introduced to represent the material flow in terms of 
enthalpy, pressure, temperature, mass flow rate, etc. The ICapeThermoMaterialObject is the interface 
representing a container of physical properties and exposes methods allowing thermodynamic 
calculations on it. 
 
 In order to compose and to launch a simulation, these PMCs are plugged into a simulator, 
called Process Modelling Environment (PME) in the CAPE-OPEN specifications. Our work extends 
PMEs to allow distributed execution of all functional business units. 
 
Transient Simulations 
 Transient simulations, also called dynamic simulations, have justified the extension of the 
ICapeUnit interface. According to the Unit Operation Special Interest Group of CO-LaN, the dynamic 
approach can be implemented using a simultaneous modular approach; such an approach is 
implemented in the INDISS and D-SPICE commercial software respectively from RSI and Fantoft. 
 This non-conventional approach can be seen as a three-step loop where each loop represents a 
time step calculation [7] (see also Figure 1)  

 
Figure 1 The INDISS solution approach: a sequential 3-steps method. 

 
 To solve this approach, the CAPE-OPEN standard defines the ICapeDynamicUnit interface. 
The StartTimeStep method informs a unit operation that a time step is being performed. Ordered call 
on all of the units composing the flowsheet matches the FirstCompute step in the INDISS 
specification. The standard envisages that Boundary Units will update the pressure values on this call. 
Other units may compute any internal variables that are independent of the flow-pressure calculation. 
The ResolveFlowPressure method, which is the second INDISS step, informs a unit operation that it 
should resolve its flow-pressure relationships. Given the type of the unit operation, i.e. arc or node, the 
standard defines methods to publish their flow-pressure equations to the network solver. An arc is a 
unit operation without time lag. It sets an equation that calculates flow given inlet and outlet pressures. 
A node is a unit operation with a small time lag. It sets an equation that calculates its compressibility 
given its pressure. To represent this, the CAPE-OPEN standard extends the ICapeDynamicUnit 
interface by the ICapeArcDynamicUnit and the ICapeNodeDynamicUnit interfaces. To get back the 
total flow and its first derivative with respect to inlet and outlet pressures, the ICapeArcDynamicUnit 
interface exposes the GetFlowAndDerivatives method. On the other side, the ICapeNodeDynamicUnit 
interface provides the GetCompressibilityAndDerivatives method which obtains the compressibility 
function and its first derivative with respect to pressure. These dependences are summurized by the 
UML class diagram shown in Figure 2. 
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Figure 2 Extension of the ICapeUnit interface, UML Class Diagram [7]. 

 
 Used in INDISS runtime PME, these methods allow computing the mass balance in an equation 
oriented fashion. Apart from these new methods, each unit operation always exposes the Calculate 
method. So, the last step (LastCompute) which computes the energy balance can be achieved. 
 

High Performance Computing 
 
 The key idea behind the High Performance computing is to fully exploit parallel computing 
architectures. Parallel computing aims at solving a problem by resolving independent sub-problems on 
different processors. This parallel evaluation allows reducing the computational time compared to a 
single computer executing the same pieces sequentially. It is important to note that even though several 
processors are used, a parallel computation might be less efficient compared to a single computer 
execution due to inherent synchronizations between processors. This section outlines key concepts that 
have to be implemented in order to fully exploit the power of the underlying computational 
architecture. 
 
Concept 
 Cluster oriented architecture generally requires algorithms that exploit coarse-grain parallelism, 
because of the delay to access distant memory (using the network), several orders of magnitude slower 
than local memory access. The main methods to exploit processors are: 1/ to overlap communication 
delay by computations; 2/ to minimize communications by scheduling tasks among the processors. The 
former is done by implementing multithreading and asynchronous (non-blocking) communication 
primitives. Within middleware such as CORBA, which is used by CAPE-OPEN standard, the 
asynchronous method invocation (AMI [8]) allows non-blocking remote invocations. The latter 
method is based on scheduling techniques which allow computing the mapping of the tasks of an 
application on distributed memory architectures. Such techniques are based on graph theory and 
require that the program is represented as a precedence graph which models its execution. 
 
Execution Graph 
 All scheduling algorithms are based on an abstract representation of the application, seen as a 
graph. Formally speaking, a precedence graph is defined as a directed graph G = {V, E} where V is a 



 5

finite set of vertices and E is a set of edges representing precedence relations between vertices. The 
vertex set consists of computational tasks, as seen in the traditional context of task scheduling, and the 
edge set represents the data dependencies between the tasks. 
 Given the precedence graph of an application, a direct assumption may be exposed. The width 
shows the potential parallelism of the application and thereby the applications associated with wide 
graphs are more suitable to be launched on distributed memory architectures. 
 
Scheduling 
 The precedence graph is fundamental in mapping computation onto the available resources of a 
cluster. A scheduler is a program that computes the mapping of each task on a processor in accordance 
with a given objective function to minimize. A classical function is often the makespan: given a 
precedence graph, a scheduling algorithm provides logical partitions which will be mapped onto 
physical computational nodes. Each partition is a set of tasks for which a start date is given. 
 In order to calculate an accurate scheduling, the scheduler needs the acyclic precedence graph 
weighted by cost information (computation cost for each task and communication cost for each edge). 
This scheduling problem, in its generality, is a NP-hard problem [14]. Thus heuristics have to be used 
to compute approximations to the optimal solution. 
 

Our Approach 
 
 This section presents add-ons to INDISS that have been made in order to automate distributed 
computation on a cluster of workstations, as presented above. 
 
From Flowsheet to Execution Graph 
 Given a particular flowsheet, a first task is to convert it into a precedence graph allowing its 
partitioning and its deployment on several PCs. The flowsheet is a business abstraction of the suitable 
program execution. Depending on the solving approach used (i.e., sequential modular, simultaneous 
modular), the execution graph will differ. Nevertheless, the CAPE-OPEN standard is based on 
component techniques which define a software component as a deployment unit. Then, a component 
has its own context of execution as well as its own internal states. Even though the CAPE-OPEN 
standard defines the ICapePropertySetPersist interface which allows saving and restoring internal 
states of objects deriving from this interface, too much work has to be done and a too large amount of 
data has to be sent in order to transfer a unit operation from one computational node to another one. 
Thus, we define the precedence oriented graph as the flowsheet following the direction of the material 
flow. 
 In the sequential modular approach, it is important to note that if design simulation or if 
flowsheeting simulation problems (where control or convergence loops) are considered, business 
tearing algorithm are used to come down to an acyclic graph. 
 
Implementation of the HPC concepts 
 Our software architecture is based on a master-slave approach. INDISS is the master of the 
simulation. It acts as a CAPE-OPEN compliant PME enhanced with specific functionalities handling 
the distributed computation. These functionalities are: 

1. The discovery of the distant computational nodes; 
2. The application scheduling using DSC [10] or ETF [11] schedulers; 
3. The flowsheet initialisation on each distant node; 
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4. In case of dynamic simulation, solving the mass balance using a centralized solver. 
 
 Since some unit operations are not CAPE-OPEN compliant and are coupled to the PME, the 
master also takes part in the simulation by running unit operations from a logical partition plus the 
native unit operations. 
 
 Slaves have to run a set of unit operations defined by the scheduler. Each slave has its own 
thermodynamic calculation server. 
 
 Master and slaves are CORBA components as shown in Figure 3. Slaves may be regarded as 
unique complex unit operations which exhibit extended CAPE-OPEN methods. While invoking such 
an extended method, our extension calls it on the whole set of unit operations it stands for. Then 
message aggregation is defined on control flow (which refers to the order in which methods have to be 
performed in order to preserve results from a sequential computation) as well as on data flow (which 
actually is exchanged data). During execution, an extended unit operation might need data from 
another distant one. Thus, during the simulation execution, each slave maintains a list of “ready” tasks. 
A “ready” task is a computational task for which all inputs are produced following the precedence 
constraints. There is no need to keep a centralized manager of the control flow. When two distinct 
computational nodes share the same material flow, this CAPE-OPEN Material Object is duplicated on 
both nodes [12]. When the unit operation producer finishes its computation, its slave sends the whole 
Material Object to the slave which consumes it. Then, the duplicated Material Object is updated and 
the outlet unit operation may become ready if all of the others inlet Material Objects are up to date. In 
case of dynamic simulation, while computing the second step, full Material Objects are not required: 
only flows and conpressibilities with their first derivatives are required to compute the Jacobian 
matrix. Thus, only these values are sent to the centralized solver. It is important to note that given the 
duplicated Material Object concepts, flows and pressures are updated while the ResolveFlowPressure 
method is evaluated on the set of arcs composing each partition. These values are used while 
computing the ResolveFlowPressure on nodes. 
 

 
Figure 3 Software architecture: a master-slave approach. 

 
 Even though the CORBA standard defines asynchronous message invocation, the omniORB 
implementation that we use does not yet implement it. To manage the communication-to-computation 
overlapping, in our implementation each extended CAPE-OPEN method uses the oneway attribute 
which defines non-blocking remote method invocation. The client process has to implement the 
callback method in compensation. On Figure 3, these methods are symbolized using the “cb” prefix. 
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Experiments 
 
 Our extension to INDISS consists in around 5000 lines of source code. Performance results 
were experimentally determined on a business test case from IFP, IFP and RSI providing the business 
entities. In this paper we only present the placement resulting from using the DSC algorithm. All 
experiments were conducted on a small Windows-based cluster composed of five 733 MHz PIII PCs 
with 256 MB of RAM interconnected with FastEthernet link (100 Mbit / s). 
 

 
Figure 4 Business Test Cases: a production network. 

 
 The business test case simulates the production of a pipe network. In its dynamic feature, the 
simulator aims at validating operating condition such as shutdown, restart, cool down, etc, and at 
estimating production instabilities (severe-slugging, terrain-slugging). The process flowsheet is 
presented in Figure 4. 
 
 Running this simulation in a dynamic fashion, the overall computational time may change if we 
introduce perturbation into the model. The first time step is time-consuming due to the mathematical 
model of the Pipe unit operation using a compositional thermodynamics and full hydrodynamics. 
Given the solving approach where the mass balance is computed using the states from the previous 
time step, the solver gives unstable values and pipe unit times greatly vary. After a few time steps, the 
network converges and the whole computational time remains stable. This “steady-state” behaviour 
will continue until a perturbation is introduced. Such a perturbation may simply be a valve opening. In 
this case, as previously, the pipe model is disturbed and the network needs several time steps to absorb 
it in order to get back its steady-state rate. 
 
Results 
 Figure 5 presents a comparison of computational times of 90 time steps between a single 
computer and a five computers distributed executions running a dynamic simulation. To assess the 
performance using our computational environment, the figure also presents the lower bound of 
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execution times. This lower bound is computed by summing unit times of each unit operation from 
each partition, the minimum time is then the lower bound. To quantify the performance, the speedup 
metric Sp is chosen. It is defined by Sp = Tseq / T// where Tseq and T// are computational times 
respectively from a single computer computation and a distributed computation. 
 To value the distributed behaviour in case of perturbation injection, we reduce a valve opening 
from 8% to 5% at iteration 21. 
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Figure 5 Comparison of overall execution times and of the seepdup given a time step. 

 
 Experimental results show that our distributed computational environment induces a small 
overhead in the range of 0.74 seconds. Considering the steady-state behaviour, the speedup is constant 
and is of 2.2. During the unstable stage while disturbing the computation, the speedup is at its top and 
reaches its peak at 2.9. A contrario, at the perigee the speedup is about 1.4. This interval comes from 
the solver instability and the linearized model used inside pipe units. The solver may propose pressures 
being out of range of previously computed values, and then the pipe has to recalculate the new values 
for this range of pressures. Nevertheless, this processing does not occur on all pipes composing the 
flowsheet and most of the work may be processed by only one computational node of the cluster. Thus, 
the scheduling does not balance well the workload during these unstable phases. The computational 
time when such a processing happens differs by four orders of magnitude. 
 

Conclusions 
 
 Clusters of workstations are no more for academic use. These architectures are now effective 
and less expensive compared to previously supercomputers such as Cray vector computer. 
Flowsheeting process engineers need increasing computational power for representing the complex 
reality with greater accuracy. Nevertheless, process engineers are not computer engineers and do not 
want to manage software implementation issues on parallel computers. 
 
 In this paper, we have shown that HPC concepts can be applied to process simulation without 
intervention from process engineers. Using our implementation means to use a common simulator, to 
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restore or to design a process flowsheet and to launch the simulation as usual. We have shown, based 
on experimental results gathered from a business test case with dynamic execution, that some time 
savings can be achieved. 
 
 In previous work [12], we have presented results with a sequential modular approach to solve 
steady-state simulations. In this paper, we focussed on transient simulations where a novel solving 
approach is used. Nevertheless, as described in [13], such approaches will not scale well using parallel 
computation due to the sequential nature of some flowsheets. The overall performance is limited by the 
structural parallelism that can be obtained with the flowsheet. To reach better performance, parallelism 
within unit operations computation should be introduced. 
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