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1.0 Introduction 

Sensor network design is a topic which has received a large amount of attention in 

recent years. Most of the performed work focuses either on maximizing some norm of 

observability of a system by choosing a sensor network or on using the Kalman filter 

error covariance matrix for computing optimal sensor locations. While initial approaches 

focused on linear systems or linearized nonlinear systems (Muske & Georgakis, 2003; 

Van den Berg et al., 2000) more recent work has also dealt with nonlinear processes 

without the requirement of linearization (Wouwer et al., 2000;  Alonso et al., 2004; Singh 

& Hahn, 2005a; 2006). However, the topic of determining a sensor network for nonlinear 

systems under the influence of disturbances has received comparatively little attention. 

This work extends the technique presented by Singh & Hahn (2005a) for 

designing sensor networks for nonlinear systems under the influence of disturbances. The 

focus of the method is not simply on determining the disturbance itself, but on designing 

sensor networks that allow for reliable state reconstruction in addition to computing the 

magnitude of the disturbance. This is achieved by balancing the empirical observability 

and controllability gramians  of the system (Hahn & Edgar, 2002), where the 

disturbances act as inputs to the system. The empirical controllability gramian contains 

the information describing the effect that the disturbances have on the states of the 

system, while the empirical observability gramians contains the information about the 

state-to-output behavior of the process. Both empirical gramians will be balanced and the 

sum of the resulting Hankel singular values serves as a measure for the “quality” of a 

sensor location for state and disturbance estimation: (1) directions in state space which 

are not uniquely affected by the disturbances will automatically be ignored for the sensor 
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network design as this is not reflected in the empirical controllability gramian; (2) 

directions in the state space which cannot be uniquely observed for a chosen sensor 

network design will also not be considered; (3) balancing the empirical controllability 

and observability gramians ensures that the measure describing the sensor network will 

simultaneously reflect state reconstruction and disturbance estimation. The presented 

technique has been applied to two examples: a distillation column described by 32 

nonlinear differential equations and a fixed bed reactor model described by nonlinear 

partial differential equations.  

 

2.0 Balancing of gramians 

2.1 Controllability gramian 

For a linear time-invariant system of the form:  

BuAxx +=&  

DuCxy +=  

(1a) 

(1b)

the controllability gramian is given by Fairman (1998): 

∫
∞

=
0
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C dtBBeeW
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(2)

If the controllability gramian has full rank then the system (1) is controllable. However, if 

the matrices are rank deficient then some of the states (or directions in state space) cannot 

be controlled or excited by the input.  

2.2  Empirical controllability gramian 

For a nonlinear system defined as: 

))t(u),t(x(fx =&     (3a)  
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))t(x(hy =  (3b)

the empirical controllability gramian is defined as (Lall et al., 2002): 
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where nnilm R)t( ×∈Φ  corresponds to  )t(x),x)t(x()x)t(x()t( ilmjlm
ss
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ss

ilmlm
ij −−=Φ  is 

the state of the nonlinear system corresponding to the impulse input 

0ilm u)t(eTc)t(u +δ= , and ilm
0x is the steady state of the system. The other variables in 

equation (4) are defined as follows:  
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with r being the number of matrices for the perturbation directions, s the number of 

different perturbation sizes for each direction, and n the number of states of the system. 

These matrices can be used for controllability analysis of nonlinear systems (Singh & 

Hahn, 2005b). 

2.3 Observability gramian 

Observability refers to the property of a system that allows the reconstruction of 

the state variables given the outputs. For a linear time-invariant systems of the form (1) 

the observability gramian: 

dteCCeW tA

0

TtA
linear,O

T

∫
∞

=  
(5)

can be computed in order to determine the observability of the system. If the 

observability gramian has full rank then the system (1) is observable. However, if the 
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matrices are rank deficient then the system will not be observable and some of the states 

(or directions in state space) cannot be reconstructed from the output data.  

2.4 Empirical observability gramian 

While an observability test for linear systems is straightforward, determining 

observability for nonlinear systems is usually too complex to be interpreted for all but 

very simple systems. One alternative is to use the relatively new concepts of empirical 

observability gramians. The empirical observability gramian: 

dtT)t(T
)rsc(
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(6)

can be computed for stable nonlinear systems of the form of equation (3), where 

nnlm R)t( ×∈Ψ  corresponds to  )t(y),y)t(y()y)t(y()t( ilm
ss

jlmT
ss

ilmlm
ij −−=Ψ  is the 

output of the system corresponding to the initial condition ssilm xeTc)0(x += , and ssy is 

the steady state output of the system. The other variables in equation (6) are as defined in 

section 2.2.  

2.5 Balanced system and Hankel singular value 

Let (A,B,C,D) be a minimal realization of a stable transfer function G(s), then the 

realization (A,B,C,D) is balanced, if the controllability gramian )W( C  and observability 

gramian )W( O of the system are equal such that (Skogestad & Postlethwaite, 1997):  

 (7)

where, n21 σ≥σ≥σ KK . 

The s'iσ are the Hankel singular values of the system. The  iσ can be further defined as: 

n,,2,1i),WW( CO
2/1

ii K=λ=σ  (8)

),,,(diagWW n21OC σσσ=Σ== KKK
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3.0 Computing sensor location for nonlinear systems under the influence of 

disturbances 

In this section, a new technique for sensor placement that takes into account 

process disturbances is presented for a nonlinear system. The motivation for this work is 

that measuring some of the process disturbances may not be possible due to practical 

constraints and these disturbances may have to be inferred from secondary 

measurements. However, these unknown process disturbances may have adverse effects 

on process monitoring. For example if an estimator is used for state estimation, these 

disturbances can result in poor estimates. As a result, computing measurement based on 

nominal parameters alone may not be sufficient for process monitoring. Therefore, it is 

important for sensor network design that state reconstruction and disturbance estimation 

is possible. 

In order to incorporate the influence of disturbances in the sensor network design 

the effect of disturbances on the system states is analyzed. This is done by the computing 

the empirical controllability gramian where the disturbances are the inputs to the system.  

The amount of energy transferred to the states by excitation with the inputs can be 

defined as (Fairman, 1998): 

∫
∞

=
0

T
C dt)t(x)t(xE  

(9)

In the special case where impulse inputs are used and the system initially starts out at 

steady state, the energy CE  is given by (Fairman, 1998; Wicks & Decarlo, 1988): 

)W(traceE CC =  (10)
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Similarly, for nonlinear systems, the energy transferred from input to states can be 

approximated by replacing the controllability gramian in equation (10) with the empirical 

controllability gramian. This approximation will hold locally as the empirical 

controllability gramian reduce to the linear gramians for linearized system (Lall et al., 

2002). Also, the energy transferred by the input to the states can be interpreted as: 

∑
=

=
n

1i
ii,CC WE  

(11)

This alternate definition of the energy expression has the advantage that, in 

addition to the influence of inputs on the overall system, the effect on individual physical 

states can be inferred from the controllability gramians. The diagonal elements of the 

gramian represent the variance of individual states due to excitation with by the input. 

Therefore, states with relatively large diagonal entries are strongly excited by the 

perturbations. In comparison, the states with a small diagonal entry are almost 

uncontrollable or almost unaffected by process disturbances. If measurements are placed 

at states that are not influenced by a disturbance or are weakly excited by the inputs, then 

the disturbances or the influence of the disturbances may not be reconstructable from the 

measurements. The resulting system will have a poor degree of observability in the 

presence of disturbances and consequently, poor estimator convergence.  

After computing the empirical controllability gramian, observability analysis of 

the nonlinear system is carried out in the next step. The empirical observability gramian 

is computed for each sensor network under consideration. The computed controllability 

gramian is then balanced with the computed observability gramians of the nonlinear 

system, where each different sensor network design results in a different empirical 

observability gramian. The reason for balancing the matrices is that in the balanced 
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coordinates only the observable and controllable directions will be reflected. The 

balanced gramians, thus capture the information about the states most excited by the 

disturbances and the directions in states space that can be more readily reconstructed.  

In case of balanced coordinates, the observability gramian and controllability 

gramian is given by (Fairman, 1998): 

TWTW~ O
T

O =  

TWTW~ O
T

C =  

(12a) 

(12b)

where ‘T’ is the transformation matrix that balances the gramians. 

However, in balanced coordinates observability and controllability gramians are 

equal and the total output energy in balanced coordinates is given by: 

)(traceE bO Σ= ;    COb W~W~ ==Σ  (13)

Therefore, in order to place sensors in the system the output energy defined by (equation 

14) is maximized over the entire set of possible sensor combinations:  

( )( )ibin,..,1i
)(tracexmaxJ Σ=

=
  

 }n,,1{i1,0x i K∈∀=    

(14)

where 1x i = , if measurement is placed at a location and 0x i = , if state ‘i’ is not 

measured. 

In this technique, the sensors are placed such that the output energy or 

information about the observable directions in the states space is maximized. However, 

these observable directions pertain to part of the observable subspace influenced by the 

input excitations or controllable subspace. Therefore, the directions in the states space 

that are most influenced by the disturbance are more heavily weighted and the directions 
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that are not influenced get a weighting of zero. However, for the special case, where all 

the directions in the states space are equally influenced, i.e., the controllability gramian is 

given by an identity matrix ( IWC = ), the sensor location problem defined in (14) reduces 

to the sensor location problem with nominal operating conditions presented in Singh & 

Hahn (2005a): 

( )( )iOin,..,1i
)W(tracexmaxJ

=
=   

 }n,,1{i1,0x i K∈∀=    

(15)

 

4.0 Case study 

This section illustrates the presented technique by performing optimal sensor 

location for a distillation column model as well as a fixed-bed reactor. For evaluating the 

predicted results for different sensor networks, an extended Kalman filter has been 

implemented for the distillation column. The performance of the extended Kalman filter 

has been compared for optimal and non-optimal sensor locations. 

4.1  Process models 

4.1.1 Catalytic fixed bed reactor 

The reactor model is an important industrial process for vapor phase oxidation of 

o-xylene to phthalic anhydride (Singh & Hahn, 2005a). The reaction is highly exothermic 

and is carried out in a fixed-bed reactor. The reactor model is assumed to be one-

dimensional pseudo-homogenous. The model consists of two partial differential 

equations, one each for the mass and the energy balance along the length of the reactor. 

The boundary conditions used for this model are 015.0)0,t(p =  atm and 625)0,t(T = K, 
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corresponding to the inlet reactant partial pressure and inlet reactant fluid temperature. 

The reactor wall temperature is assumed to be equal to the inlet reactant fluid 

temperature. The infinite dimensional reactor model is discretized in space using finite 

differences converting the original model into a set of n2×  nonlinear ordinary 

differential equations, where n is the number of discretization points in space. For this 

work 30 discretization points were chosen, resulting in a set of 60 nonlinear ordinary 

differential equations. 

4.1.2 Distillation column 

A distillation column model with 30 trays for the separation of a binary mixture of 

cyclo-hexane and n-heptane has been considered (Singh & Hahn, 2005a). The column 

has 32 states and is assumed to have a constant relative volatility of 1.6. The feed is 

introduced in the middle compartment (17th tray) as a saturated liquid. The feed stream 

has a composition of 5.0=fx , distillate and bottom product purities are 935.0=Dx  and 

065.0=Bx , respectively. The boiling points of cyclo-hexane and n-heptane are 353 k and 

371 k, respectively, at constant column pressure. The reflux ratio is held at a constant 

value of 3.0. The column model is described by a set of 32  nonlinear  ordinary 

differential equations with temperatures as state variables and 33 explicit algebraic 

equations. 

4.2 Optimal sensor location  

4.2.1  Catalytic fixed bed reactor 

The optimal location for a temperature sensor for a 10% disturbance in the feed 

composition to the reactor is investigated. The empirical controllability gramian, as 

defined in Section 2.2, is computed where the feed composition is chosen as the input to 
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the system. In a next step, the empirical observability gramian, as defined in Section 2.4, 

is computed for all the thirty possible sensor locations in the  reactor.  Then, a balanced 

gramian is computed for every location in the reactor by computing a suitable 

transformation matrix ‘T’, defined in equation (12). The best location for a temperature 

sensor for the case where there are disturbances in the feed composition is computed by 

maximizing equation (14) over the set of thirty possible temperature locations. The 

optimal sensor location for 1a 0% disturbance in the feed composition is determined to be 

0.6m from the reactor inlet (Figure 1). In order to  verify  the  computed  sensor location, 

the  diagonal elements of the controllability gramian have been plotted along the reactor. 

The diagonal elements of the controllability gramian can provide an indication of the 

influence of process disturbances on the individual states. It can be concluded that the 

states which are strongly influenced by process disturbances will have larger diagonal 

entries. In comparison, the states which are hardly influenced by the input will have 

diagonal entries close to zero. From Figure 2, it can be concluded that the states around 

the hot  spot are  most  affected by the disturbance in the feed composition. The 

computed optimal sensor location of 0.6 m (Figure 1),   points  to  the state  most   

affected   by   a disturbance in   the  feed  composition. As result of the process 

disturbance, the steady state hotspot location moves from its nominal value of 0.4m to 

0.5m (Figure 3). Therefore, the computed sensor location corresponds to the most 

sensitive location in the reactor under the influence of disturbances. 
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Fig. 1. Measure for placing one sensor in the reactor with 10% disturbance in feed 
composition 

 

Fig. 2. Diagonal entry of states, i.e. variances of the states, in the empirical controllability 
gramian for 10% disturbance in feed composition for the fixed bed reactor 
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Fig.3. Steady state and transient profile for nominal feed composition and %10±  
disturbance in the feed composition 

 

In comparison, if only the observability gramian, i.e. the disturbance is not taken 

into account for sensor location, is used for sensor location in the reactor (by solving the 

sensor location problem given by equation (15)), then the optimal location is determined 

to be 0.4 m from the reactor inlet (Figure 4). The reason for this is that by using only the 

observability, the movement in the hotspot location in the reactor would not be taken into 

account (see Figure 3). 

4.2.2 Distillation column 

In the second example, the location of a temperature sensor has been computed 

for a nonlinear distillation column. In order to investigate the influence of the feed 

disturbance, the diagonal elements of the controllability gramian have been plotted for a 

10% disturbance in feed composition  (Figure 5).  
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Fig. 4. Measure for placing one sensor in the reactor for nominal operating parameters 

 

 

Fig. 5. Diagonal entry of states (variance of states) in the empirical controllability 
gramian for 10% disturbance in feed composition for the distillation column 
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It  can  be concluded from Figure 5 that for 10% disturbances in the feed 

composition, that many of the states of the column are affected by this disturbance. The 

states around the 26th tray in the stripping section are most affected by the perturbation in 

the feed composition, while the states near the top and bottom of the column are least 

sensitive to perturbations in the feed composition. The states near the 6th tray in the 

distillation column also seem to be good locations for placing a temperature sensor. 

However, the states near the column top and the column bottom are not the good choices 

for placing measurement in the system. In addition, the states near the feed tray are also 

not good locations for placing measurements in the column. The reason for this is, 

although the feed tray is highly sensitive to disturbances in the feed composition, the feed 

tray is insensitive to perturbations in any column state. As a result, a measurement at the 

feed tray will result  in a  poor  degree  of  observability  of  the system.  Since the Hankel   

singular  values are the product eigenvalues of  controllability  and  observability 

gramian,  feed  tray  has a small Hankel singular value due to the poor system 

observability for a measurement at the feed tray. In order to further corroborate the 

computed sensor locations in the distillation column, an extended Kalman filter has been 

implemented for optimal (26th tray) and non-optimal measurements (1st and 17th tray). 

The extended Kalman filter has been tuned for similar process and measurement noise. 

The filter performance has been compared for 10% sinusoidal disturbance in the feed 

composition and the process disturbance is an unknown input for the estimator. 
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Fig. 6 Measure for placing one sensor in the distillation column with 10% disturbance in 
feed composition 

 

 

Fig. 7. Reconstruction of 3rd state in the distillation column, for optimal (26th tray) and 
non-optimal ( 1st and 17th), for sinusoidal process disturbance of 10% in the feed 
composition 
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Fig. 8. Reconstruction of 10th state in the distillation column, for optimal (26th tray) and 
non-optimal ( 1st and 17th), for sinusoidal process disturbance of 10% in the feed 
composition 

 

Fig. 9. Reconstruction of 23rd state in the distillation column, for optimal (26th tray) and 
non-optimal ( 1st and 17th), for sinusoidal process disturbance of 10% in the feed 
composition 
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It can be concluded from  the  results that for states very close to the measurement 

result in good reconstruction of the states. As shown in Figure 7, the estimation of state 3 

return better results for a measurement at the 1st state compared to the measurements 

placed at the 26th state or the17th state. However, for the optimal location (26th tray) good 

overall reconstruction is obtained throughout the distillation column as can be seen from 

the reconstruction of the 10th state (Figure 8), the 23rd state (Figure 9) and the 30th state 

(Figure 10) in the distillation column. A   good   reconstruction   of the 10th   state   

(Figure 8) in  the distillation column  is  obtained   for a measurement  at  the 26th state. In 

comparison, the performance of the extended Kalman filter worsens, if the measurement 

is placed at the 1st state. For the case of a measurement at the 17th state, the reconstruction 

of the 10th state with an extended Kalman filter is extremely poor (Figure 8). Similarly, 

good reconstruction of the 23rd state (Figure 9) and the 30th state (Figure 10) in  the 

distillation  column is obtained for a measurement  at  the 26th state. In comparison, 

reconstruction by extended Kalman filter results in large estimation error if the 

measurement is  placed at  non-optimal locations, i.e.,  1st  or  17th state. 

In addition, the performance of the extended Kalman filter has been compared for 

step disturbance of 10% in the feed composition. Figure 11 shows the steady state 

reconstruction for the  entire  distillation column  profile  for  optimal and non-optimal 

measurement locations. In case of measurement at the 1st state, good estimation is 

obtained at the upper end of the column. However, the estimation error increases as one 

moves away from the measurement. In case of measurement at the 17th state, there is a 

large estimation error in  all the states of the column, with the exception being the 17th 
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state which is directly measured.  In comparison, for the optimal measurement (26th 

state), reliable state estimation is possible for the entire distillation column. 

 

Fig. 10. Reconstruction of 30th state in the distillation column, for optimal (26th tray) and 
non-optimal ( 1st and 17th), for sinusoidal process disturbance of 10% in the feed 
composition 

 

Fig. 11. Reconstruction of distillation column profile, for optimal (26th tray) and non-
optimal (1st and 17th), for 10% step disturbance in the feed composition 
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5.0 Conclusions 

In this work a new technique for sensor location for nonlinear dynamic systems 

has been presented that takes into account the effect of disturbances on the system. This 

is achieved by considering the disturbances as inputs to the system and computing an 

empirical controllability gramian for this augmented set of inputs, followed by balancing 

the empirical controllability gramian with the observability gramians resulting from 

different sensor network configurations. The optimal sensor network for this case is 

determined to be the one which results in the largest sum of the Hankel singular values. 

The presented technique has been applied to two nonlinear systems, a fixed bed 

reactor and a binary distillation column models. The computed results have been 

corroborated by comparing the performance of an extended Kalman filter for optimal and 

non-optimal measurement locations. 
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