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Random conjugates of smart polymers 
and proteins: We have been designing and 
synthesizing a wide variety of stimuli-
responsive polymers (which are sometimes 
called "smart" polymers) for many different 
applications in biotechnology and medicine.  
We have conjugated or complexed the 
responsive polymers to (a) proteins such as 
streptavidin, antibodies and enzymes, (b) 
nucleic acids and (c) a variety of drugs. 
Random conjugation of the smart polymer to 
a protein is usually carried out by reaction of 
a terminal or pendant group of the polymer 
to a protein’s lysine amine group. Such a 
conjugate of a smart polymer and an affinity 
protein (called the capture molecule) may 
recognize and bind to the affinity binding 
partner of the protein (called the target 
molecule), and then this polymer-protein 
conjugate may be phase-separated from 
solution by a specific stimulus, selectively 
removing the target molecule from the 
complex mixture. In this way, an affinity 
separation process may be carried out in 
solution, rather than in a packed 
chromatographic column.  Such a process 
might be used to recover a product from a 
process stream, or to remove a toxin from a 
fluid mixture.  If a second, labeled affinity 
protein for the target molecule is added to 
the complex mixture, it will bind to the target 
molecule and then the three, affinity-linked 
proteins (eg, immune complex “sandwich”) 
may be removed by stimulating the smart 
polymer to phase separate. The signal from 
the labeled protein will then be an indication 
of the concentration of the target molecule in 
the test solution. This is like an 
immunoassay carried out in solution rather 
than in a well on a plate reader (ELISA) 
 

Site-specific smart polymer-protein 
conjugates: We have extended this 
technology to site-specific protein-polymer 
conjugates, where the conjugation site is 
near the protein’s active site.  To do this we 
use site-specific mutagenesis to form mutant 
proteins with cysteine -SH groups near the 
active site, to which we conjugate our smart 
polymer.  This permits us to block and 
unblock the active, recognition site of the 
protein by different stimuli, and sometimes 
to do this without phase separation of the 
conjugate. 
 
Dual-responsive smart copolymers: We 
have synthesized polymers and copolymers 
with dual responsivities to combinations of 
temperature, pH and light (visible-UV) 
stimuli. The polymer structures may be 
random, block or graft copolymers. Most 
recently we have used living free radical 
polymerization techniques such as RAFT to 
form block copolymers with two different 
sensitivity blocks. We have demonstrated 
control of an enzyme bioprocess using both 
light- and temperature-sensitive copolymer-
enzyme conjugates. 
 
Microfluidic applications: We have 
similarly bound the smart polymer and 
capture biomolecule (affinity protein or 
nucleic acid) to nanobeads and utilized the 
beads for applications in microfluidic devices 
for point-of-care diagnostics, which operate 
with affinity capture of target molecules as a 
first step followed by stimulation to effect 
physical separation as a second step. The 
responsive polymers may be stimulated to 
phase separate and this causes the protein 
conjugate to bind by hydrophobic 
interactions to the channel wall of the 
device. Site-specific conjugation of dual-
sensitivity random, block or graft polymers to 
selected proteins may be especially useful 
for these purposes.  
 
Intracellular drug delivery applications: 
The endosome of a cell is acidic and 
fusogenic peptide sequences in viral protein 
coats respond to the lowered pH to disrupt 
the endosomal membranes, releasing their 
genomic cargo into the cytosol.  We are 
taking advantage of this mechanism by 
designing synthetic, biomimetic polymers 
that are pH-responsive, and act similarly to 
the pH-responsive viral peptides. We have 



applied pH-sensitive and combined pH- and 
temperature-sensitive polymers and 
copolymers to enhance intracellular drug 
delivery, especially to facilitate endosomal 
escape to the cytosol of protein drugs or 
nucleic acid drugs such as plasmid DNA, 
antisense ODNs and siRNA.  
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