
 
 

 1  

Model-Reduction by Simultaneous Determination of Network Topology and Parameters: 
Application to Modules in Biochemical Networks 
 
Mano Ram Mauryaa, Scott J. Bornheimerb, Venkat Venkatasubramanianc and  
Shankar Subramaniama, b, d,1 
 
aLaboratory for Bioinformatics and Computational Biology, San Diego Supercomputer Center 
bDepartments of Chemistry & Biochemistry and Cellular & Molecular Medicine 
dDepartment of Bioengineering, University of California, San Diego 
9500 Gilman Dr La Jolla, CA  92093, USA 
 
cLaboratory for Intelligent Process Systems, School of Chemical Engineering, Purdue 
University, West Lafayette, IN 47907, USA 
 
Abstract 

Development and analysis of detailed quantitative models of biological systems is 
computationally prohibitive due to inherent complexity and nonlinearities. Even if a 
mathematical model can be developed, lack of large-scale good-quality data makes accurate 
estimation of a large number of parameters impossible. Hence, reduced-order models (ROMs) 
consisting of essential biochemical mechanisms are more suitable for computational analysis 
and for studying important systemic functions. In this paper, a mixed-integer nonlinear-
optimization-based approach to model-reduction is presented in which, starting with a detailed 
biochemical model with concomitant computational details (reaction network and mathematical 
description), the structure and the parameters of a reduced-order model are determined 
simultaneously. A genetic-algorithm is used to solve the optimization problem. The 
methodology is demonstrated by developing a ROM for the GTPase cycle module of M1 
muscarinic acetylcholine receptor, Gq, and regulator of G-protein signaling 4 (RGS4, a 
GTPase activating protein or GAP) starting from a detailed model of 48 reactions.  The 
resulting ROM has only 14 reactions, and the ROM fits experimental data well and predicts 4 
limiting signaling regimes corresponding to the extremes of receptor and GAP concentration. 
The method is about an order of magnitude faster than a previous method for reduced-order 
modeling that used a multiparametric variability analysis approach. 
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Introduction 
The nonlinearity and complexity of biochemical systems is attributed to the presence of 

numerous chemical species and their complexes, which together participate in reactions and 
interactions spanning multiple timescales and spatial domains. Computational analysis of 
these systems is impractical due to unavailability of good-quality data and the computational 
complexity of simulation. An example of this complexity can be seen in a detailed model for the 
activation of the MAP kinase pathway by platelet-derived growth factor (PDGF) (Bhalla et al., 
2002). This model consists of about 100 nonlinear ordinary differential equations (ODEs) and 
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algebraic equations and about 200 parameters even without enumerating all possible 
complexes. Conzelmann et al. (2004), studying the similar epidermal growth factor  (EGF) 
pathway, reported about 40,000 states in a complete model. The complexity becomes even 
more appreciable when considering the signaling networks of an entire cell. To simplify these 
complex networks, they  can be broken down into distinct modules based upon the underlying 
sub-processes (functional decomposition), subcellular-location and principle of retroactivity 
(Asthagiri and Lauffenburger, 2000; Conzelmann et al., 2004; Hartwell et al., 1999; Neves and 
Iyengar, 2002). However, the modules themselves can be quite complex. Hence, there is a 
need to develop methods to reduce the size and complexity of computational models of 
biochemical networks while retaining functional features and predictive accuracy. With a library 
of reduced-order models (ROMs) for the modules, a ROM for an entire system can be 
developed by combining the ROMs for the modules.  

 
 
The generation of ROMs for linear systems is well studied (Green and Limebeer, 

1995); however, for nonlinear systems including most biological systems, model-reduction is 
not well studied and is not as straight-forward as for linear systems (Conzelmann et al., 2004; 
Petzold and Zhu, 1999). A model-reduction method for biological models should take into 
consideration that a) the parameters of the system are seldom accurately measured, and b) 
the available experimental data may provide a number of context-specific constraints that must 
be incorporated into the optimization to guide parameter estimation.  A number of methods 
have been proposed to reduce models of chemical systems.  These include lumping, 
sensitivity analysis and time-scale analysis (Okino and Mavrovouniotis, 1998), state-space 
reduction methods (Obinata and Andersion, 2001) and optimization-based parameter and/or 
state elimination approaches using genetic algorithm (Edwards et al., 1998) or integer 
programming (Androulakis, 2000; Bhattacharjee et al., 2003). Conzelmann et al. (2004) have 
argued that most of these approaches are not suitable for model-reduction of biological 
systems. In all these methods, it is assumed that the values of the parameters are known. 
Recently, Maurya et al. (2005) presented a multiparametric variability analysis (MPVA)-based 
approach in which unknown parameters could be estimated using experimental data. However, 
the method is recursive and hence time consuming in that the size of the model is reduced in 
several rounds by eliminating few parameters in each round. In addition, the parameter-
elimination space is not searched well even in a pseudo-global sense. 

 
 
In this article a mixed-integer nonlinear-optimization-based approach to model-

reduction is presented in which the structure (e.g., reaction network) and the parameters of the 
ROM are determined simultaneously by solving the optimization problem using a genetic-
algorithm (GA) (Goldberg, 1989). In principle this is a parameter-elimination approach. The 
method is used to develop a reduced-order model for the GTPase cycle signaling module of 
m1 muscarinic acetylcholine receptor, Gq, and the GTPase activating protein (GAP) named 
regulator of G protein signaling 4 (RGS4) starting with the detailed model recently developed 
by Bornheimer et al. (2004). 

 



  

Methods: Simultaneous Determination of Network Topology and Estimation of 
Parameters 

In a general parameter-estimation problem, model parameters (pi) are estimated by 
minimizing the fit-error between experimental data and model predictions while satisfying 
appropriate constraints. For model-reduction, the parameter-estimation problem is extended by 
including binary variables (ui) to indicate whether or not a parameter is retained in the ROM. 
The key idea is to substitute each parameter, say, pi (that can be possibly eliminated) by the 
expression ui*pi, and then to minimize a suitable objective function with respect to both pi and 
ui. ui = 1 or 0 imply that the parameter is retained or eliminated, respectively. Complex 
expressions in which some parameters should be retained or be eliminated simultaneously can 
be handled by introducing appropriate constraints. As an example, in a Michaelis-Menten flux-
expression, both Vmax and KM should be either retained or eliminated. The objective function is 
composed of two terms: (1) the number of retained parameters, and (2) an expression to 
reflect the fit-error so as to differentiate between ROMs with an equal number of retained 
parameters but different structures. The procedure is as follows: 

 
1. Given the model equations, substitute each parameter pi by ui*pi.  
2. Transform the constraints (if any) appropriately. 
3. Develop the mixed-integer nonlinear program (MINLP):  
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where n1 is the number of parameters to be optimized, n2 is the total number of 
parameters that can be eliminated, m1 is the number of equality constraints and m2 is 
the number of inequality constraints. α  is a factor used to adjust relative weight of the 
fit-error e. Different indices, i and j on p and u, respectively, are used to indicate that 
some of the fixed parameters can also be possibly eliminated and that some of the 
estimated parameters can be specifically retained if appropriate. The fit-error, e, is 
usually a weighted sum of squared-errors between model prediction and experimental 
data. eth is the threshold on fit-error and is usually decided on the basis of acceptable fit-
error for the detailed model and error or noise in experimental data. 

4. Solve the resulting constrained MINLP using GA (Maurya et al., 2005). 
 
 
The values of the retained parameters are used for computational purposes. The 

estimates of values of other parameters may not be used without appropriate justification since 
they did not play a role in fitting the experimental data even though they satisfied all the 
constraints on the parameters. In a general case, where all parameters are unknown and they 
can be potentially eliminated (i.e., n1 = n2), the computational complexity of the model-
reduction process is about twice of the complexity of only parameter estimation. It can be 
noted that similar to any methodology for model development, the amount of experimental data 
used and its quality strongly affect the reduced-order model developed. 



  
 
Test Case Study: A Reduced-Order Model for GTPase-Cycle Module 

The GTPase-cycle module controls signal transduction in heterotrimeric G protein 
signaling networks by regulating the activity of heterotrimeric G proteins, and serves as a key 
control point for many cellular processes such as gene-transcription and cell-cycle regulation 
(Neves et al., 2002). In the module, G protein coupled receptors (GPCRs) activate G proteins 
by accelerating the exchange of GDP for GTP, and GTPase activating proteins (GAPs) 
deactivate G proteins by accelerating hydrolysis of GTP to GDP. The detailed model of 
GTPase-cycle module presented by Bornheimer et al. (2004) is shown in Figure 1A (and 
includes the reactions shown both in black and grey). Ai (i = 1, 2, 3, etc.) denotes exchange 
(association or dissociation) of GAP, Ri denotes exchange of GPCR, Ti denotes exchange of 
GTP, Pi denotes exchange of a phosphate (GTP hydrolysis reaction) and Di denotes exchange 
of GDP. The detailed model consists of 17 ODEs and 48 reaction rate parameters. The key 
model outputs are the fraction of active G protein (Z), and GTP turnover rate (v) in steady state 
(Bornheimer et al., 2004). This model fitted the experimental data well (Figure 1B) and 
predicted that local concentrations of active receptor and GAP regulate Z and v within 4 
limiting signaling regimes (LSRs)  (Z: similar to Figure 1C; v: not shown). In the LSRs, active R 
and GAP are either absent or are present in saturating concentrations, such that only one of 
the 4 extreme pathways (i.e., G G*T GD G, GA G*AT GAD GA, etc. (Fig. 1A)) is 
active.  In LSR G low peak response (Z) and slow signaling dynamics (v) are achieved, 
whereas low peak and rapid signaling is achieved in LSR GA. LSR RG is specialized for slow 
(sustained) signaling with large peak and LSR RGA for both large peak and rapid signaling. 
The Physical significance of the LSRs is that by controlling the local concentration of active 
receptor and GAP, cells can exhibit a variety of response. 

 
 
Figure 1. (A) Reaction network for the detailed model (all reactions) (Bornheimer et al., 2004) 
and the 14 parameter ROM (reactions in dark-color) of the GTPase-cycle module. G (G*): G-
protein (active form), R: active G-protein coupled receptor (GPCR), A: GAP, T: GTP, D: GDP.  



  

Free GTP, GDP and phosphate (Pi) are not shown for simplicity. (B) The values of the retained 
parameters: the units of association rate constants (e.g., T+3, A+2) are 1/(s.M) and the units of 
dissociation rate constants (e.g., D-3, P-2) are 1/s. (C) Fit of the data predicted by ROM and 
comparison with the detailed (base) model. (D)The ROM predicts 4 limiting signaling regimes. 

 
 
A reduced-order model of the GTPase-cycle module with 14 parameters was 

generated using the method described in the previous section. The data used for optimization 
consisted of the experimental data on GTP turnover rate under different conditions (Figure 1B), 
2 data points on Z (Bornheimer et al., 2004), and three data points on Z from the region 
between LSR G and LSR GA. Several constraints based on experimental data were described 
for the detailed model (Bornheimer et al., 2004); all were imposed on the network during 
model-reduction; in addition, to ensure the connectivity of each species in the reduced-
network, a constraint was imposed to retain at least one of the reactions A+1, A+2 or A+3 
(binding of GAP to G-protein). As shown in Figure 1B and 1C, the ROM fitted the experimental 
data well and predicts the existence of 4 LSRs. The ROM retained the ternary complexes 
RGA, RG*AT and RGAD, thus validating the ternary complex hypothesis proposed by 
Biddlecome et al. (1996) and recently used by Bornheimer et al. (2004). An estimate of the 
values of the parameters retained is listed in Figure 1D. GA-based optimization identified 
several other solutions with the same network topology (same parameters were retained) but 
somewhat different values of the estimated parameters as well as solutions with different 
network topology and different values of the estimated parameters. The 14 parameter ROM is 
the smallest ROM from 5 runs of GA. 

 
 
As is true about any model, new data may necessitate model-revision, potentially 

leading to expansion of a reduced-order model or a detail model. Indeed, for the GTPase case 
study, when additional data on the LSRs (v) predicted by the detailed model is added and it is 
required that the reactions A+5 and A-6 be retained, a model with 17 parameters is obtained 
(not shown). Since this new reduced-order model (17-parameter ROM) captures the LSRs in 
both the Z-space and v-space, its range of validity is expected to be much better than that of 
the 14-parameter ROM. 

 

Discussion and Conclusions 
Restricting the size of computational models is a major problem in systems biology. 

We developed a MINLP-based method for model-reduction and tested it on a detailed model of 
the GTPase-cycle module. The ROM thus obtained is comparable to (good fit to data, 
prediction of the 4 LSRs and retaining the active ternary complex RG*AT) or is better (slightly 
smaller size) than a ROM developed earlier by using a MPVA approach (Maurya et al., 2005). 
The predictions of the ROM qualitatively agree with other experiments on regulation of G-
protein activity (e.g., dose-response curve and decrease in half-saturation concentration of 
pheromone α-factor in RGS vs. RGS-knockout strains of yeast (Yi et al., 2003)). This method 
is particularly suitable for model-reduction of biological systems which are nonlinear and for 
which little is known about parameter values. In general, the methodology is also expected to 
result in substantial reduction of models of highly connected modules. 
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