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Introduction 
 
 Equations of state may be used to calculate pure component vapor-liquid equilibrium 
properties such as vapor pressure, heat of vaporization, liquid density, and vapor density.  The 
standard approach requires coupling the EOS with a phase equilibrium criterion such as free 
energy, chemical potential, or fugacity.  The resulting equations are nonlinear and must be 
solved by numerical methods. 
 
 An alternative approach is applicable to cubic EOS such as the commonly used 
Soave-Redlich-Kwong and Peng-Robinson equations.  Equilibrium properties may be explicitly 
expressed as power series in reduced temperature or related functions.  These results are 
more convenient than numerical calculations, but are subject to truncation error in many 
practical situations. 
 
 Modifications or alternatives to these power series methods were developed.  These 
included simplified versions of the power series which minimized truncation error, a 
generalized version of the Antoine equation for vapor pressure, and a new expression for 
vapor pressure which showed reasonable accuracy over the temperature range from the triple 
point to the critical point.  All results were expressed as universal functions of temperature and 
the acentric factor.  Deviations between these results and the exact equilibrium property 
predictions from the EOS were illustrated by generalized graphs. 
 
VLE from Cubic Equations of State 
 
 Cubic equations of state of the Van der Waals type are widely used in chemical 
engineering practice because they provide a reasonable balance between accuracy and 
simplicity.  Two common examples are the Soave-Redlich-Kwong [1] and Peng-Robinson [2] 
equations, shown below as Eqs. (1) and (2), 
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 In these equations, the attractive function aEQ(T) has the form 
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with the critical value of  
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and the acentric factor functions given by  
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The occupied volume parameter b is given by 
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Values of the dimensionless numerical constants in Eqs. (4) and (7) are a0,SRK = 0.42748, a0,PR 
= 0.45724, b0,SRK = 0.08664, and b0,PR = 0.07780. 
 
 Like many equations of state, SRK and PR may be used to calculate vapor pressure 
and other pure component vapor-liquid equilibrium properties.  Doing this requires coupling the 
EOS with a phase equilibrium criterion such as free energy, chemical potential, or fugacity.  
Eqs. (8) and (9) give expressions for the pure component fugacity coefficient for SRK and PR. 
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When an equilibrium state exists, Eq. (1) gives three real roots for volume from SRK.  The 
smallest and largest of these are liquid and vapor volumes, respectively.  The fugacity 
coefficients calculated by Eq. (8) will be equal when the liquid volume is substituted and when 
the vapor volume is substituted.  For PR, Eqs. (2) and (9) are used.  A numerical algorithm is 
required to solve either of these sets of nonlinear equations.  
 
Power Series Methods for Cubic Equation VLE 
 
 A formal procedure [3] is available to express results for phase densities and vapor 
pressure of coexisting liquid and vapor phases as analytic power series in temperature.  The 
approach begins by writing reduced deviation variables for phase densities (∆ρL and ∆ρV) and 
temperature (∆T) about the critical point.  These variables are defined as  
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with M representing either ρL, ρV, or T.  The resulting formal power series are 
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 After equilibrium constraints are applied to these series, the coefficients Aj and Bi are 
observed to be functions of the acentric factor function fEQ(ω) which depend upon the cubic 
EOS being applied.  They are substance-dependent since they contain the acentric factor 
function.  For SRK and PR, Aj is given by a polynomial of degree j in the acentric factor 
function, Bi is given by a polynomial of degree (i-1) in the acentric factor function for even i, 
and by a similar polynomial multiplied by the square root of (1+ fEQ(ω)) for odd i.  Expressions 
for these polynomials have been tabulated. [4,5] 
 
 The utility of this method stems from the convenience of direct computation of 
coexisting phase properties without need for auxiliary equilibrium criteria such as fugacities.  
The weaknesses of the method arise from being based upon a series expansion about the 
critical point.  In practice, the infinite series given by Eqs. (13) to (15) must be truncated.  Few 
terms are required near the critical point, but this is the situation where cubic EOS are least 
accurate.  At moderately high or moderate temperatures, where the equations have 
reasonable accuracy, many series terms are needed to prevent truncation error.  The 
magnitude of truncation error also depends upon the property (phase density or vapor 
pressure) and varies with acentric factor.  In general, truncation errors are largest for vapor 
density and smallest for liquid density, they are larger for the PR equation as compared to 
SRK, and they increase with increasing acentric factor. 
 
Modifications and Alternatives to the Existing Power Series Method for Vapor Pressure 
 
 Three approaches were attempted to make the existing method more useful for 
practical vapor pressure calculations.  These were an algebraic rearrangement of the series 
centered away from the critical point, an alternative series approach based upon a low 
temperature limit, and a derivation of generalized Antoine vapor pressure functions. 
 
 The algebraic approach was designed to minimize truncation error at moderate to 
moderately high temperatures, where the underlying EOS are reasonably accurate.  The 
strategy was applied to the SRK equation and proceeded in two stages.  In the first 
(recentering) stage, the formal power series of Eq. (13) about the critical point was replaced 
with a power series expanded about some moderate reduced temperature below the critical 
point, denoted by the variable TE for expansion temperature. 
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 In practice, only a finite number of terms were available for Eq. (13).  Equating the 
expressions in Eqs. (13) and (16), using terms up to j = 13, gave a set of algebraic equations 
which were solved for the new coefficients Aj’ in Eq. (16).  Since Eq. (16) represented a power 
series about the temperature TE, rather than Tc, truncation error for this new series was 
minimized in the vicinity of TE.  Hence, it was possible to use significantly fewer terms in the 
new series of Eq. (16) without introducing large truncation errors.   
 
 Figure 1 shows truncation error contours at the one percent level for a typical situation 
with the SRK equation.  Terms up to j = 8 were used in the new series, and the expansion 
temperature TE was chosen as 0.7.  In general, expansion temperatures near TE = 0.7 resulted 
in a good balance between errors near the critical temperature and at low temperatures when 
the new series was truncated. In the example, only for extremely high acentric factors are 
there noticeable (greater than one percent) truncation errors at high temperatures. 
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Figure 1.  Truncation error contours (1 Percent) for 8 Term Truncated Series, TE = 0.7. 
 
 In the second (error-correcting) stage of the algebraic method, the truncation error 
near the critical point was minimized by adding one additional term to the series expansion.  
Theory suggests that the truncation error in a Taylor-type power series is proportional to the 
next term in the series.  For example, in a series truncated at j = 5, the error is expected to be 



proportional to (Tr-TE)6.  Since the correct result is known at the critical point, the truncation 
error was easily characterized there using the expression A’j+1(1-TE)j+1.   
 
 An example is shown in Figure 2.  Here the truncation error for an error-corrected new 
series, Eq. (16) with j = 5, was compared to the original series with j =13 and also with j = 5.  
The expansion temperature 0.64 was used, and results were generated for an acentric factor 
of 0.36.  The figure shows that the truncation error for the new series stayed below one 
percent for all reduced temperatures between 0.58 and 1.0, and never exceeded 0.1 percent 
above reduced temperature of 0.62.  As long as 0.1 percent truncation error is acceptable, this 
was nearly as good as the original series with j = 13, and a large improvement on the original 
series with j = 5, for which truncation error exceeded one percent for all reduced temperatures 
below 0.77. 
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Figure 2.  Comparison of Truncation Errors for TE = 0.64 and ω = 0.36 
 
 Work continues on tuning the expansion temperature, number of terms, and error 
correction procedure for this method. 
 
 A second approach worked with the EOS and fugacity relationships in the low 
temperature limit, as T approached zero.  This is an unphysical limit from the standpoint of 
VLE, as liquid behavior does not persist below the triple point which typically falls near a 
reduced temperature of 0.3 to 0.4.  The strategy was to derive a limiting expression for low 
temperatures that extrapolated reasonably well to moderate temperatures where physical 
behavior is represented.  In the best case, the existing series about the critical point did not 



extrapolate accurately below a reduced temperature of approximately 0.58, and even that 
accuracy required j = 13 in the series expansion for SRK. 
 
 For the SRK equation, a relationship between reduced vapor pressure and reduced 
temperature was found in the mathematical (unphysical) zero temperature limit as follows. 
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Figure 3.  Deviation Ratio between Eq. (17) and Exact SRK Vapor Pressure. 



 
 Figure 3 shows results when vapor pressure predicted by Eq. (17) is compared to the 
exact result from the SRK equation.  The curves plotted in Figure 3 represent various acentric 
factors.  Since the coefficients in Eq. (17) were fit in the low temperature limit, the deviation 
between the predictions and the exact SRK result went to zero in that limit.  Behavior at 
increasing temperatures was interesting.  Although no additional corrections were made to the 
fit of the equation, the zero temperature limit equation was capable of tracking the exact vapor 
pressure from the SRK equation within an order of magnitude; in fact, within a factor of two, 
over the entire temperature range from zero to the critical point.  This was unlike the behavior 
observed with the truncated critical point series of Eqs. (13) and (16), where the deviation 
caused by truncation error increased by polynomial or exponential order away from the critical 
point. 
 
 Work continues on verifying the method and adapting it to use at practical 
temperatures where VLE is observed. 
 
 In the third and final approach for improving the utility of the series method, a 
generalized form of the Antoine vapor pressure equation was developed.  In the traditional 
Antoine equation, dimensional constants are used to fit vapor pressure data over a 
temperature range. 
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For the new approach, the Antoine equation was written in reduced variables and the 
constants were taken as functions of the acentric factor. 
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Complete results for the functions A*, B*, and C* will be available in a future publication. [6]  
The method used to determine these functions was a continuous version of least squares 
regression in which the difference between Eq. (24) and a variation of Eq. (13) was minimized 
by adjusting parameters within the functions A*, B*, and C*.  After an initial regression fit was 
completed, the results were compared to the exact vapor pressure predictions of the EOS, and 
the functional parameters were further adjusted by an algebraic and statistical technique.   

 
 Typical results for the method are shown in Table 1.  As is the case with the traditional 
Antoine equation, the range of accuracy was limited -- in this example to reduced temperatures 

Table 1.  Antoine Constant Functions for the SRK Equation for 0.70 < Tr < 0.84. 
 
A* = 4.4401 + 2.2128fSRK(ω) - 0.53518fSRK(ω)2 + 0.17368fSRK(ω)3 - 0.018512fSRK(ω)4 
B* = 5.0075 + 1.2494fSRK(ω) - 0.78155fSRK(ω)2 + 0.32010fSRK(ω)3 - 0.047601fSRK(ω)4 
C* = 0.124652 - 0.273702fSRK(ω) + 0.0750076fSRK(ω)2 - 0.0137818fSRK(ω)3 + 
0.00145038fSRK(ω)4 



between 0.70 and 0.84.  Figure 4 illustrates the accuracy of the method.  Each curve in Figure 
4 represents a different acentric factor.  Within the specified temperature range (0.70 < Tr < 
0.84) the vapor pressures predicted by Eq. (24) matched the exact SRK vapor pressures to 
within less than 0.1 percent deviation. 
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Figure 4.  Percentage Deviation between Vapor Pressure Predicted by Generalized Antoine 
Equation, Eq. (24), and Exact SRK Vapor Pressure for Various Acentric Factors. 
 
Conclusions 
 
 Three methods for explicit estimation of vapor pressure from cubic EOS were 
presented.  These approaches were shown to reproduce, with reasonable accuracy, the vapor 
pressure determined by combining the EOS with a phase equilibrium constraint such as 
fugacity.  These methods also alleviated some of the truncation error problems inherent in 
previous explicit vapor pressure methods which relied upon power series about the critical 
point.  
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Nomenclature 
 
A Constant in Eq. (23), Antoine vapor pressure equation 
A* Function of acentric factor in Eq. (24), generalized Antoine vapor pressure equation 
Aj temperature coefficients in Eq. (13) for reduced pressure 
Aj’ temperature coefficients in Eq. (16), recentered series for reduced pressure 
aEQ(T) energy parameter in attractive term 
ac,EQ energy parameter in attractive term at the critical point 
a0,EQ dimensionless numerical coefficient of energy parameter  
B Constant in Eq. (23), Antoine vapor pressure equation 
B* Function of acentric factor in Eq. (24), generalized Antoine vapor pressure equation 
Bi temperature coefficients in Eqs. (14) and (15) for reduced density deviation variables 
bEQ excluded volume parameter in equation of state 
b0,EQ dimensionless numerical coefficient of excluded volume parameter 
C Constant in Eq. (23), Antoine vapor pressure equation 
C* Function of acentric factor in Eq. (24), generalized Antoine vapor pressure equation 
Ci coefficients in Eq. (17), vapor pressure equation at low temperature limit 
fEQ(ω) quadratic function of acentric factor 
h ratio of excluded volume parameter to molar volume 
M general thermodynamic state property (T, ρL or ρV) in Eq. (12)  
P absolute pressure 
R gas constant 
T absolute temperature 
TE reduced temperature used for recentered series expansion in Eq. (16) 
V molar volume 
z compressibility 
 
Greek letters 
 
ΔM reduced deviation variable of state property M (T, ρL or ρV) defined by Mr – 1 
ΔT’ reduced temperature deviation variable in Eq. (16), defined by Tr – TE 
ρ molar density 
φEQ fugacity coefficient for equation of state 
ω acentric factor 
 
Subscripts 
 
c critical (temperature, pressure, or molar density) 
EQ parameter or coefficient applying to equation of state EQ (SRK or PR) 
r reduced (temperature, pressure, or molar density) 
  
Superscripts 
 
L liquid (molar density or molar volume) 
V vapor (molar density or molar volume)  
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