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This study deals with mechanism of gas transport into a turbulent liquid across a shear-free 
gas-liquid interface (or free surface) in an open channel. A direct numerical simulation of three-
dimensional Navier-Stokes and gas transport equations is applied to realize three-dimensional 
turbulent flows in a region close to the free surface. The Reynolds number defined by the wall 
shear velocity and the water height is varied from 150 to 400 to consider the effect of the 
Reynolds number on turbulent gas transport. The gas transfer coefficient at the free surface is 
evaluated by the ensemble-average of instantaneous three-dimensional gas concentration 
distribution. The results of the present numerical simulations are compared with the previous 
laboratory experiments on the gas transfer coefficient. The comparison of between the 
laboratory experiments shows that the absolute values of the Sherwood number, which is a 
normalized form of the gas transfer coefficient, predicted by the present DNS agree well those 
obtained by the previous laboratory experiments. While the present numerical predictions 
reveal that Sh  is proportional to 3/4 power of the Reynolds number defined by the bulk mean 
velocity, Rem , the previous laboratory experiments concluded that Sh Rem∝  is satisfied, 
resulting overestimation of Sh  at large Reynolds number region in the laboratory experiments. 
Several reasons for the discrepancy between the laboratory and numerical experiments could 
be point out. In particular, the effect of small-scale perturbation on the free surface produced 
by the experimental equipment for measuring gas flux is thought critical for the overestimation 
of gas flux. In addition, this report proposes a new definition for the characteristic time scale, 
instead of applying the previous VITA method for evaluation of the time scales of the surface 
renewal. The length scales of the surface divergence are computed by their two-point 
correlation in the streamwise direction, and the characteristic time scales are obtained by using 
the length scales. The results of the time scale analysis reveal that the time scales of the 
surface divergence obeys the surface renewal assumption, asserting that the surface 
divergence is one of the candidates to quantify the gas fluxes at the free surface. 
 
INTRODUCTION 

A research on gas transfer mechanism at a gas-liquid interface has been under active 
investigation particularly in the last two decades. This research has been motivated by the 
necessity for evaluating gas fluxes at the atmosphere-ocean interface in related to 
understanding, for example, global carbon cycle, and manipulation of gas fluxes in industrial 
equipment. An investigation on turbulence and turbulent gas transfer at a shear-free gas-liquid 
interface (or free surface) in a two-dimensional channel is expected to dedicate for 
fundamental understanding on physics of turbulent gas transport, since turbulence in the open 
channel is one of the most simplified flows with the free surface. The author has investigated 
relation between turbulence structures and turbulent gas transfer mechanism at the free 
surface in the open channel experimentally and numerically in the last decade. We found 
throughout the laboratory experiments on measurements of turbulence structures and 
turbulent gas transport that the gas transfer mechanism is determined by interactions of 
turbulence with the free surface. The idea of the surface renewal introduced by Dankwerts1 



was employed to quantify the free surface activity for gas transport, and an empirical 
correlation for gas transfer at the free surface are made based on this idea by measuring the 
surface renewal frequency in the laboratory experiments. The empirical correlation suggests 
that the gas flux at the free surface is proportional to square of the surface renewal frequency, 
which is consistent with the concept by Dankwerts. Also, Rashidi et al.2 measured the free-
surface activity, defined by the fraction of the free-surface area covered by turbulent patch, and 
the mean patch residence time at the free surface. They correlated the gas flux with these 
hydrodynamic properties based on the surface renewal approximation, and compared the 
predicted gas fluxes with those measured by Komori et al.3,4 The comparison exhibited that the 
Rashidi et al. prediction agrees well with our previous measurements of gas fluxes. Rashidi6 
observed turbulence-surface interactions by their flow visualization approach based on a 
hydrogen-bubble technique, and found that the near-wall turbulence is an origin of the 
turbulent patch on the free surface. Recently, Nagaosa and Handler6 confirmed numerically 
that the near-wall coherent structures emanate toward the free surface and induce the splat 
events.  

Although the idea of the surface renewal assumption seems to be helpful for evaluation 
of the gas transport mechanism, quantification of the surface renewal events needs conditional 
sampling technique. It suggests that condition for sampling data should be specified, hence, 
optimization of parameters for data sampling is inevitable. For instance, Komori et al.3,4 applied 
the variable-time time averaging (VITA) technique7 to educe the surface renewal from dye 
tracer signals. In their detection process, two parameters should be optimized; one is the 
averaging time for taking the local average of the signals, and the other is the threshold level to 
discern the surface renewal motions from background random perturbation. An appropriate 
determination of the two parameters will be difficult to generalize, and will not be practical in 
various kinds of turbulent flows. Also, quantification of the area covered by turbulent patch and 
its mean residence time as Rashidi et al.2 carried out in their study are also difficult, depending 
on their definition. These definitions were not discussed in the Rashidi et al. report2, and 
ambiguity for quantification of both the patch area fraction and the mean patch residence time 
remains. 

This study concentrates on quantifying the free-surface activity by introducing the 
surface divergence. This parameter is expected to quantify exactly the free-surface activity, 
which is synchronized by presence of splat (a fluid motion moving toward the free surface) and 
anti-splat (a fluid motion moving away from the free surface) events8. One of the benefits for 
introducing this hydrodynamic parameter is easy evaluation of this parameter in numerically 
simulated turbulence. This parameter involves spatial derivatives in a two-dimensional free 
surface, and its evaluation was almost impossible based on traditional equipment for 
turbulence measurements such as a laser-Doppler velocimetry and a hot-wire probe. A digital 
particle image velocimetry, however, has been employed for multidimensional turbulence 
measurements, and this tool is expected to overcome the previous difficulties in measuring the 
surface divergence. 

The purpose of this study is to discuss turbulence structures and turbulent gas transport 
mechanism at the free surface in fully developed turbulence. We employ a direct numerical 
simulation technique to examine physics of free-surface turbulent flows. For validation of the 
present numerical approach, the results of the laboratory measurements on gas flux were used 
for comparison. Several turbulence statistics on the surface divergence are shown to discuss 
characteristic length and time scales. Suitability of the surface divergence to predict gas fluxes 
at the free surface is explained by showing the joint probability density distributions of the 
surface divergence and the concentration gradient at the free surface. 



 
LABORATORY EXPERIMENTS 

Figure 1 illustrates experimental setup for measurement of gas fluxes at the free surface 
in the open channel.3,4 The dimensions of the open channel are 7.6 m long, 0.5 m width and 
0.2 m height. The laboratory experiments have been carried out in a range of the Reynolds 
number of about 2,600 Re 12,200m< < , where Rem  is the Reynolds number defined by the 

bulk mean velocity, 1
1 30mU u dx

δ−≡ δ ∫ , the water depth, δ and fluid viscosity, ν, as Rem mU= δ ν  

( .  signifies the time-space average). The Reynolds number Rem  can be converted to the 
friction Reynolds number, Re , based on the wall shear velocity, uτ , by applying the empirical 
correlation of the viscous friction coefficient at the wall by Dean9 
  ( ) 1 40.073 2Re .mf −=         (1) 
Substituting Eq. (1) into the definition of the viscous friction coefficient, 

  2 2,
2w m
fu Uττ = ρ = ρ          (2) 

we obtain the relation between Re uτ≡ δ ν  and Rem  as 
  7 8Re 0.175Re ,m=          (3) 
where ρ is the fluid density. Using Eq. (3), the experimental Reynolds number regime of 
2,600 Re 12,200m< <  corresponds to about 170 Re 660< < . The Froude numbers in the 
laboratory measurements are changed from approximately 0.1 to 0.7, where the Froude 
number is defined by ( )1 2Fr mU g≡ δ  based on the gravitational acceleration, g. The 
hydrolically subcritical condition of the laboratory experiments suggests that the effect of wave 
activity at the free surface does not play an important role in determining turbulence structures 
in water. 

 
 

Figure 1: Experimental apparatus for measuring gas flux and subsurface hydrodynamics in 
turbulent open channel flows. 



We use carbon dioxide (CO2) to measure gas fluxes at the free surface, since this gas 
has relatively large solubility into water at standard temperature and pressure and gas-liquid 
equilibrium in water-CO2 system obeys the Henry's law, 
  

2 int,COp HC=           (4) 
where 

2COp  is the partial pressure of CO2 in the atmosphere above the free surface, and H  is 

the Henry constant. The molecular diffusivity of CO2 in water is 9 21.74 10 m s−×  at 293 K , 
therefore, the Schmidt number in the laboratory experiments is Sc 580≈  at this temperature. 
A plastic box of 1.0 m long and 0.3 m width filled with CO2 is installed above the free surface, 
so that flow rate of CO2  absorbed into turbulent water is measurable based on a soap-film 
meter equipped as indicated in Figure 1. Since this plastic box is sealed by very thin water film 
due to the effect of capillary at the water surface, pressure in this plastic box is always 
maintained constant at an atmospheric pressure of about 

2
101.3 kPaCOp ≈ . Once we 

determined gas flux at the free surface, the gas transfer coefficient, K , is determined by 
  ( )int 0 ,Q K C C= −          (5) 
where gas concentration at the wall is assumed to be zero, 0 0C = . 
 
NUMERICAL METHOD 

Figure 2 is the schematic representation of the computational domain for turbulent open 
channel flows. We consider a rectangular box bounded by a solid bottom wall and a rigid free 
surface to realize fully developed turbulence.10 The sizes of the computational domain are 1L , 

2L  and δ  in the streamwise, spanwise and wall-normal directions. The periodic boundary 
condition is applied to both the streamwise and spanwise directions to generate fully 
developed turbulence. The bottom is treated as a non-slip boundary, while a free-slip 
assumption is used for approximating the free surface under zero-Froude number assumption. 
Suitability of the zero-Froude number assumption has been certified by our previous numerical 
studies on turbulence in the open channel10.  

 
Figure 2: Schematic representation for direct numerical simulations of turbulent open channel 
flows. 



The boundary condition for gas concentration is the Dirichlet type, 0C C=  at the wall 
and intC C=  at the free surface. The concentration difference between the free surface and the 
bottom, int 0C C CΔ = − , is constant and always positive throughout the computations to discuss 
gas transport mechanism into turbulent fluid across the free surface. The effect of gas 
concentration on fluid density is ignored in this study, therefore, fluid density ρ  is constant 
throughout the present computations. 

The governing equations for the present DNS are the conservation of mass, momentum 
and passive scalar. These governing equations used in this study are normalized by the wall 
shear velocity, uτ , water height, δ , concentration difference, CΔ , like 

 2, , , , .i i
i i

u xC t pu C x t p
u C u u

+ +

τ τ τ

ρ= = = = =
Δ δ δ

     (6) 

After these normalizations are made, we obtain the nondimensional version of the governing 
equations, 
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⎛ ⎞∂ ∂ ∂= −⎜ ⎟∂ ∂ ⋅ ∂⎝ ⎠

       (7) 

The Greek subscripts follow the summation convention in this report, while the Roman 
alphabets signify the component of vector quantities. We drop all the overbars and 
superscripts + for simplicity of description of these equations. The two nondimensional 
parameters, the Reynolds and the Schmidt numbers, appear in the normalized governing 
equations and determine nature of turbulence and turbulent gas transport. 

We perform five simulations of free-surface turbulence by changing the friction 
Reynolds number from 150 to 400, corresponding to the bulk Reynolds number from about 
2,290 to 7,070. These Reynolds numbers of the present DNS cover a large part of our 
previous laboratory experiments, 2,600 Re 12,200m< < . The Schmidt number used in the 
present study is 1, rather than introducing the actual Schmidt number of CO2, Sc 580≈ , 
because of limitation of computer resources6. The employment of the virtual Schmidt number 

Table 1: Outline of direct numerical simulations. 
 

Run Re Um Rem Sh L1×L2 Grid Points Δx1
+ Δx2

+ Δx3
+ 

I 150 15.3 2,290 4.70 4πδ×2πδ 192×256×97 9.82 3.68 0.183~ 
3.49 

II 180 15.7 2,830 5.50 4πδ×2πδ 256×288×109 8.84 3.93 0.174~ 
3.83 

III 240 16.4 3,930 7.09 2.5πδ×1.25πδ 192×256×137 9.82 3.68 0.168~ 
4.14 

IV 300 17.0 5,100 8.50 2πδ×πδ 216×256×161 8.72 3.68 0.153~ 
4.57 

V 400 17.7 7,070 11.0 2πδ×πδ 288×360×201 8.72 3.27 0.150~ 
4.97 



for the present DNS has been justified by our previous studies10. We can compare gas fluxes 
obtained by both the laboratory and numerical experiments by using the calibrated Sherwood 
number 1 2ShSc− , instead of using Sh . Table 1 summarizes the outline of the present five DNS.  

The governing equations are approximated by a second-order finite difference method 
on a Cartesian staggered grid. An improved version of a fractional step method by Choi and 
Kim11 is applied to link the velocities and the pressure without introducing a scalar potential. 
The equations are advanced in time by a four-stage fractional step procedure with a third-order 
Runge-Kutta integration scheme for nonlinear terms and a second-order Crank-Nicolson 
scheme for linear terms with an upper limit of the CFL number of 3 2 3∼ . All the elliptic type 
finite-difference equations for three velocity components, pressure and gas concentration are 
solved by a direct Poisson solver based on the fast Fourier transforms (FFT) and the Gaussian 
elimination. 
 
RESULTS AND DISCUSSIONS 
Fully developed turbulence statistics 
  Figure 3 shows the effect of the Reynolds number on distribution of mean velocity 
profiles in a semi-logarithmic chart. The wall-normal coordinate is scaled by the viscous wall 
units as 3 3x x u+

τ= ν . Typical low-Reynolds number effects, for example, very short log layer 
away from the wall, if it exists at all especially in Runs I and II, and decrease of log-layer 
velocity with increasing the Reynolds number, are found in this figure. It should be mentioned 
that the mean velocity profile for Run V (Re 400= ) agrees well with the DNS result by Moser 
et al.12 of Re 395=  in a two-dimensional channel. Also, the decrease of B  with increasing the 
Reynolds number is very clear in the present study, as well as the Moser et al.12 numerical 
results. 

Root-mean-square (rms) velocity fluctuations, rms
iu , are defined by 

 
Figure 3: The effect of the Reynolds number on mean velocity profiles. The wall-normail 
coordinate is scaled as 3x uτ ν . 



  1 2' ' ,rms
i i iu u u=          (8) 

where 'i i iu u u= −  is the fluctuation from the ensemble average of velocity component iu . 
The same rms profiles are plotted in Figure 4(a) and Figure 4(b) for the all five cases by 
applying different scalings. The scaling used in Figure 4(a) is the viscous wall units, as 
introduced in Figure 3. In Figure 4(b), the wall-normal coordinate is scaled simply by 3x δ . The 
peak values of the 1

rmsu  profiles in the all five cases are about 3 15x + ≈  in Figure 4(a), which 
are in excellent agreement with the laboratory measurements3 and the previous numerical 
study in the near-wall turbulence by Moser et al.12 The peak values are, however, influenced 
strongly by the Reynolds number, with their maxima changing from 2.61 at Re 150=  to 2.70 at 
Re 400= . This figure also exhibits that the effect of the Reynolds number enhances rms 
profiles in the whole of the flow domain for all the three velocity components. In Figure 4(b), 
rms velocity profiles are collapsed in the outer region of 3 0.5x δ > , hence, the effect of the 
Reynolds number on rms profiles is not distinctive there.  The collapse of rms velocity profiles 
also suggests that characteristic thickness of the subsurface layer, which can be identified by 
increase of 1

rmsu  and 2
rmsu  profiles due to the intercomponent energy transfer10, is independent 

with the Reynolds number if the wall-normal coordinate is scaled by δ . About 10% of the water 

 
Figure 4: Root-mean-square velocity profiles obtained by the present DNS. The two different 
scalings on the wall-normal coordinate are applied; (a) scaled as 3x uτ ν ; (b) scaled as 3x δ . 



height adjacent to the free surface, 30.9 1.0x< δ < , is thought as characteristics thickness of 
the subsurface layer, therefore, the thickness scaled by wall shear velocity and fluid viscosity 
varies from about 15 at Re 150=  to 40 at Re 400=  in viscous wall units. 

We decompose velocities and concentration as 'i i iu u u= +  and 'C C C= + . 
Inserting these decompositions into the governing equations and take time-space average, the 
following the Reynolds average equations for momentum and gas transport are obtained 

  

1 ' ' ,
Re

1 ' ' .
Re Sc

i i i
j j i

j j j

j j
j j j

u u u
u u u

t x x x

C C C
u u C

t x x x

⎛ ⎞∂ ∂ ∂∂+ = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂∂+ = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ⋅ ∂⎝ ⎠

     (9) 

Since the velocity and concentration fields are fully developed in the two wall-parallel directions, 
Eq. (9) is simplified as 

  

1
3 1 3
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3
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1 ' ' 1,
Re Sc
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u C
x

∂
− = −

∂

∂
− =
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        (10) 

where normalization by the friction concentration, C Q uτ τ= , is used in Eq. (10). Both the 
distributions of the Reynolds stress and turbulent gas flux are plotted in Figure 5(a) and Figure 
5(b), as well as the profiles of the total momentum and gas fluxes. It is clear from the two 
figures that the results of the present DNS satisfy Eq. (10), verifying suitability of the fully 
developed velocity and concentration fields. Also, it is clear that the effect of the Reynolds 
number decreases thickness of both the near-wall and subsurface layers.  
 
Gas transfer coefficient 

Gas flux, Q , at the free surface in laboratory experiments is evaluated by gas flow rate, 
V , absorbed into turbulent water measured by a soap-film meter as 

  ,VQ
A

=           (11) 

where A  is the area of free surface in contact with CO2. On the other hand, gas flux in 
numerical experiments can be estimated by the definition of flux based on the Fick’s law of 
diffusion, 

  
3

3

,
x

C
Q D

x
=δ

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

         (12) 

where D  is the molecular diffusivity of gas. The gas transfer coefficient is computed by 
substituting Eq. (12) into Eq. (5) as 

  
3

3

.
x

CQ DK
C C x

=δ

⎛ ⎞∂
≡ = ⎜ ⎟Δ Δ ∂⎝ ⎠

        (13) 

The coefficient is normalized by the water depth, δ, and molecular diffusivity, D , as 

  Sh ,K
D
δ=           (14) 



for convenience of comparison between the experimental and numerical results on gas fluxes. 
The normalized gas transfer coefficient is referred to as the Sherwood number. It is easy to 
confirm that Sh  is the normalized gas concentration gradient at the free surface 

  

3

3
Sh .

x

C

x
=δ

⎛ ⎞∂
⎜ ⎟=
⎜ ⎟∂
⎝ ⎠

         (15) 

 In this section, the attention is focused on comparison of the gas transfer coefficients 
obtained by the laboratory and present numerical experiments. Our previous laboratory 
experiments on gas transfer at the free surface are indicated in Figure 6 as a function of the 
bulk Reynolds number, Rem , by closed circles. The Sherwood number in the turbulent open 
channel can be correlated by the following equation 
  1 2 3 1.007ShSc 1.70 10 Re .m

− −= ×        (16) 
This figure suggests that the normalized gas transfer coefficient is proportional to the Reynolds 

 
 

Figure 5: Wall-normal distributions of (a) the Reynolds stress; (b) the turbulent gas flux. The 
turbulent fluxes are plotted by solid lines while total fluxes are signified by dashed lines.  



number, 1 2ShSc Rem
− ∝ , is satisfied in the case of gas transfer at the free surface in turbulent 

open channel. The results of the present DNS are also plotted in the same figure by open 
circles. The numerically predicted Sherwood numbers agree well with the results of the 
previous laboratory measurements, nevertheless, their dependence on the Reynolds number 
is different. The present DNS predicts that the Sherwood number is expressed by 
  1 2 2 0.746ShSc 1.42 10 Re ,m

− −= ×        (17) 
therefore, 1 2 3 4ShSc Rem

− ∝  is claimed by the present numerical simulations. 
 Rashidi et al.2 measured the fraction of free-surface area covered by the surface 
patches, PA A , and the mean patch residence time at the free surface, PT , to establish their 
correlation between the gas transfer coefficient and the subsurface hydrodynamics. They 
introduced the concept of the surface renewal to link the mean patch residence time and the 
gas transfer coefficient like, 

  
1 2

,P

P

A DK
A T

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
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         (18) 

and obtained 

  
( )

1 2
3

1 2
Sc 7.7 10 .

m

K
u U

−

τ

= ×         (19) 

Normalizing Eq. (19) as Sh K D= δ , Rem mU= δ ν  and Re uτ= δ ν , 

  
( )

1 2
3

1 2
ShSc 7.7 10 ,
Re Rem

−
−= ×         (20) 

is derived. The employment of the Dean’s relation7 for the viscous wall friction, Eqs. (1)-(3), is 
used to rewrite Eq. (20) as 
  1 2 3 15 16ShSc 3.22 10 Re .m

− −= ×        (21) 
The relation of Eq. (21) is also plotted by a chain-dotted line in Figure 6. It should be 
mentioned that the two independent laboratory experiments by Komori et al.3 and Rashidi et 
al.2 agree well with each other. The exponents of Rem  in the two correlations of Eqs. (16) and 

 
Figure 6: The relation between the Sherwood number, Sh , and the bulk Reynolds number, 
Rem .   



(21) are very close (15 /16 0.947≈ ), hence, Rashidi et al.’s experiments confirm adequacy of 
our previous measurements on the gas transfer coefficients. 
 Figure 7 compares the results of laboratory measurements with those by the present 
DNS based on the Rashidi et al.’s correlation2, Eq. (20). While the results of the laboratory 
experiments by Komori et al.4 seem to satisfy Eq. (20), the predicted Sh  by the present DNS 
deviates from Eq. (20) slightly, underestimating the gas transfer coefficient. Several reasons 
could be pointed out to explain this discrepancy. One is an error which seems to be inevitable 
in the laboratory experiments during the measuring process of gas fluxes at the free surface. A 
very slight contact of the plastic box to the free surface through very thin water film may 
produce small-scale perturbation on the water surface, resulting possibly an overestimation of 
gas fluxes. The other reason may be the effect of the side walls on turbulence under the free 
surface. The interaction of the side walls with water flow in experimental flume establish 
turbulence eddies in addition to those produced by the interactions of main flow with the 
bottom. The effect of the side walls could also be a reason of overestimating gas fluxes. While 
a numerical error which damps small-scale turbulence by truncation in finite-difference 
approximation could underestimate the concentration gradient at the free surface, the 
truncation error is not considered critical in the present numerical predictions. Handler et al. 
predicted the Sherwood number in a turbulent open channel flow of Re 180=  based on a 
pseudospectral simulation, which represents very accurate nature of small-scale turbulence 
with very small truncation effect. The Handler et al. result13,  1 2ShSc 5.4− ≈ , is very close to 
the present predictions of 1 2ShSc 5.50− = , therefore, the present predictions of the Sherwood 
number is considered reliable. It is very difficult to give convincible explanation on the 
discrepancy between the results of the laboratory experiments and those by the numerical 
predictions so far, because these differences are small. In addition, the experimental results 
scatter among individual experimental runs. It should be stressed here that the discrepancy of 
the Sherwood numbers between the laboratory experiments and the numerical prediction are 
small, and acceptable practically as a margin of errors.  
 
NEW PROPOSAL FOR CHARACTERISTIC TIME SCALE 
 We introduce the surface divergence to quantify the free-surface activity and to predict 

 
 

Figure 7: Comparison of the Sherwood numbers obtained by the laboratory experiments3,4 with 
those by the present DNS based on the correlation by Rashidi et al.2 



exactly the gas flux following the idea of the surface renewal. The surface divergence, S , is 
defined by the following equation 

  
3 3

31 2

1 2 3

,
x x

uu uS
x x x

=δ =δ

⎛ ⎞⎛ ⎞ ∂∂ ∂≡ + = −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
        (22) 

because of the continuity of fluid, 0u xα α∂ ∂ =  (again, the Greek subscript follows the 
summation convention). It is recognized very widely that the surface divergence is one of the 
appropriate measures to quantify the free surface activity, since S  is associated with the splat 
and anti-splat events8. It is reasonable to speculate that the surface divergence is linked 
physically to the instantaneous gas flux at the free surface. Indeed, the joint probability density 
distributions of the instantaneous gas concentration gradient and the surface divergence, as 
illustrated in Figure 8, verifies that the two parameters have a positive correlation. The 
correlation coefficients between the two parameters are about 0.75 in the all five DNS cases, 
and the statistical relation of the two parameters is considered large. In fact, a comparison of 
instantaneous distributions of the surface divergence and the gas concentration gradient at the 
free surface shown in Figure 9 support adequacy of the surface divergence to quantify the gas 
fluxes at the free surface. 
 The characteristic time scale for the surface divergence is evaluated based on its two-
point correlation in the streamwise direction by the following procedure. First, the two-point 
correlation is computed by 

 
 

Figure 8: The joint probability density distribution of the surface divergence and the 
instantaneous gas concentration gradient at the free surface at Re 180=  (Run II). 
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to estimate the characteristic length scale of the surface divergence, where rmsS  is root-mean-
square of S . The distance 1xΔ  where ( )1 3R xΔ  is zero-correlated (i.e., ( )1 3 0R xΔ = ) is 
regarded as half of the length scale, SL . A typical example of the two-point correlation 
distribution for Re 180=  is indicated in Figure 10, and zero-correlated length is shown in the 
same figure by the dotted vertical line. Next, the characteristic time scale of the surface 
divergence is estimated using the mean velocity at the free surface, surfU , as 

   .S
S

surf

LT
U

=           (24) 

The surface renewal assumption by Dankwerts1 shows that the gas transfer coefficient is 
correlated by the characteristic time scale, ST , 

1 2

S

DK
T
⎛ ⎞

∝ ⎜ ⎟
⎝ ⎠

.          (25) 

The following relation is obtained by the nondimensionalization of Eq. (25) 

  
1 2

1 2 ReShSc ,
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− ⎛ ⎞
∝ ⎜ ⎟⎜ ⎟
⎝ ⎠

         (26) 

where S ST T uτ= δ  is the normalized characteristic time scale for the surface divergence.  

 
Figure 9: Comparison between instantaneous distributions of: (a) the surface divergence and: 
(b) the gas concentration gradient at a free surface for Re 180=  (Run II). White in each figure 
indicates larger values. 



Figure 11 depicts the relation between the characteristic time scale and the Sherwood number 
obtained by the present numerical prediction (the results at Re 400=  is yet to be processed 
for this analysis, and the results of Runs I-IV are only plotted). As expected, the results of the 
present numerical prediction suggest that the Sherwood number can be predicted by 

  
1 2

1 2 ReShSc ,
S

a
T

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
        (27) 

where a  is the constant and 1 9a ≈  is obtained. Eq. (27) satisfies the concept of the surface 
renewal, as indicated by Eq. (26), therefore, Figure 11 justifies suitability of the surface 
divergence to correlate the gas flux at the free surface following the concept of the surface 
renewal. The newly proposed procedure to determine the characteristic time scale for 
evaluation of the gas flux is advantageous compared with the previous VITA technique, since 
no arbitral parameter to be optimized is involved there. 
 
CONCLUDING REMARKS 
  The mechanism of gas transfer into a turbulent liquid across a shear-free gas liquid 
interface (or free surface) has been investigated by means of a direct numerical simulation of 
turbulent open channel flows. The gas transfer coefficients were evaluated by the ensemble-
averaged concentration gradient at the free surface and compared them with those by the 
laboratory experiments. The results of this comparison exhibited that the numerically predicted 
Sherwood numbers, which are the nondimensional form of the gas transfer coefficient, agree 
well with the experimental results. The experimental results exhibited that 1 2ShSc Rem

− ∝  is 
satisfied in the gas absorption experiments, while 1 2 3 4ShSc Rem

− ∝  is found by the present 
numerical predictions. The difference of the exponents in both the numerical and laboratory 
experiments is attributable to overestimation of the Sherwood number in the laboratory 
experiments, particularly at the large Reynolds number regime. Several reasons for this 

 

 
 

Figure 10: A typical example of the two-point correlation distribution of the surface divergence 
in the streamwise direction at Re 180= (Run II). The decorrelation length is shown by the 
vertical dotted line. 



discrepancy between the laboratory and numerical experiments are considered. One is an 
effect of small-scale perturbation on the free surface in the laboratory experiments produced 
by the plastic box contacting very slightly to the free surface. The gas transfer coefficient at the 
free surface may increase unphysically by the effect of such small-scale perturbation. A 
numerical error produced by truncation for evaluations of spatial derivatives is, on the other 
hand, not considered critical in the present simulation, since the predicted Sherwood number 
in this study is confirmed very close to that computed by the other separated numerical study, 
whose numerical technique involves negligible truncation effect. 
 The determination of the characteristic time scale based on the two-point correlation of 
the surface divergence was discussed using the turbulent flow realization obtained by the 
present DNS. The relation between the time scale and the Sherwood number reveals that the 
surface divergence is suitable to define the characteristic time scale for exact prediction of the 
gas flux at the free surface, following the assumption of the surface renewal. The proposed 
determination of the characteristic time scale could be an alternative to the previous VITA 
method, since no arbitral parameter is employed in the proposed process. 

The present discussion on the characteristic time scale at the free surface ignored many 
important physical phenomena such as surface contamination, density stratification and 
surface waves. An applicability of this method to various kinds of turbulent flows should be 
verified in the near future. 
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Figure 11: Suitability of the characteristic time scale of the surface divergence for estimation of 
the gas flux at the free surface based on the idea of the surface renewal approximation. 
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