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Abstract

Control of large, networked systems is typically accomplished by apply-
ing local modeling and control techniques to the smaller, more manageable
subsystems. In a chemical plant, for instance, raw materials are transformed
into high value-added products through a network of interacting unit oper-
ations. Model predictive control subsystems have been widely implemented
across the chemical industry sector exploiting the rich theoretical develop-
ments in the area [9, 2, 6]. It is well known that a decentralized control ap-
proach can cause unacceptable closed-loop behavior when the subsystems
are tightly coupled. Centralized MPC of large-scale systems, on the other
hand, is viewed by most practitioners as unrealistic and undesirable. With
several plants already functional with decentralized MPCs in place, opera-
tors do not wish to invest in a complete control system redesign as would
be necessary to implement centralized MPC. The opportunity presented for
cross-integration within the MPC framework and potential requirements and
benefits of such technology has been discussed in [4, 5]. Representative dis-
tributed MPC formulations in the literature are suboptimal strategies with
unproven nominal properties [1, 10, 3]. In this work, the problem of dis-
tributed control of networked systems through the integration of the differ-
ent subsystems’ MPCs is addressed. A modeling framework that quantifies
the interactions among the subsystems is employed. A cooperation-based
distributed MPC algorithm with guaranteed performance properties was de-
scribed in a previous work [8]. All iterates (intermediate state and input tra-
jectories) generated by this distributed MPC algorithm are feasible and the
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iterates monotonically converge to the optimal, centralized MPC solution.
The distributed controller defined based on any intermediate iterate can be
shown to stabilize the system in closed loop.

In a practical MPC implementation, the states of each subsystem are es-
timated rather than measured. Closed-loop stability of the output feedback
distributed MPC controller (terminated at any intermediate iterate) requires
that all local subsystem-based state estimators are stable. For unconstrained
distributed estimation, one possible choice is to use subsystem-based Kalman
filters to assess the subsystem states from local measurements. We expand
upon our earlier results and examine the role of distributed state estima-
tion and disturbance modeling within the framework of distributed MPC.
Specifically, we answer the following questions: Under what conditions do
stable distributed state estimators exist? Are they optimal? What impact
does the choice of the distributed estimation framework have on closed-loop
stability? What are the different choices of disturbance models that guar-
antee offset-free performance; can the disturbance models employed in the
decentralized MPC framework be used in the distributed MPC scheme? To
incorporate physical constraints in the distributed estimation framework, a
distributed moving horizon estimation (MHE) strategy is formulated. Stabil-
ity arguments for the distributed MHE formulation are derived from arrival
cost approximation ideas described in [7] for constrained, centralized estima-
tion.

In [8], the steady-state target calculation was carried out in a centralized
manner and the availability of the optimal, steady-state subsystem input
and state vectors was assumed 1. As an alternative to centralized steady-
state target computation, a cooperation-based iterative algorithm for dis-
tributed steady-state target calculation is proposed. In this framework, the
steady-state input and state targets are computed at the subsystem level with
the exchange of steady-state input and state information among the subsys-
tems’ MPCs. All intermediate iterates are feasible steady states and the al-
gorithm monotonically approaches the optimal steady-state target with it-
eration number. These two properties allow the intermediate termination of
the distributed target calculation algorithm without compromising controller
stability.

The distributed MPC controller, therefore, consists of three main compo-
nents:

1. Distributed regulator.

2. Distributed state estimator with disturbance model.

3. Distributed target calculation.

The flexibility to terminate the distributed MPC at any intermediate iter-
ate without affecting feasibility and closed-loop stability enables the prac-
titioner to terminate the distributed MPC control algorithm at the end of
each sampling interval, even if convergence is not attained. Such a dis-
tributed control philosophy also presents an opportunity to enhance control

1Composite Linear Program (CLP), which is an industrial application from Aspentech Ltd.
also solves a large, centralized steady-state target problem and passes the relevant steady-state target
vectors to each subsystems’ DMC controller. The authors would like to thank Dr. R. Bindlish, Dow
Chemicals and Dr. T.A. Badgwell, Aspentech Ltd. for this information.



performance in cases in which different parts of an interconnected system are
owned by different organizations.

We present examples from chemical engineering and other engineering
fields to illustrate the effectiveness of the proposed distributed MPC approach.
In each example, the performance of the distributed MPC framework is eval-
uated against other existing MPC formulations. In many cases, we observe
that the cooperation-based distributed MPC formulation terminated after
just 1 iterate achieves a significant improvement in closed-loop performance
compared to decentralized MPC.
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