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Abstract 
 
 In this paper, we demonstrate the construction and use of a simple slide rule, and 
demonstrate its application as a manipulative aid intended for studying chemical reactor 
design.  The slide rule is simple enough that it can easily be built by a student or a teacher, 
and designed to represent any form of chemical kinetics.  In this paper, we demonstrate the 
construction and use of a slide rule for first order irreversible decomposition reaction in a 
batch, CSTR and PFR reactor. 
 
Introduction 
 
 The study of engineering is strongly coupled to the study of mathematics.  To the extent 
that we can facilitate learning of mathematical concepts, we can facilitate the learning of 
engineering concepts.  A large body of education literature has established a substantial 
relationship between the use of manipulative materials and student’s achievements in the 
classroom, particularly at the primary through high school level.[1]  The major rationale for the 
use of manipulative or concrete operations can be attributed to Piaget,[2] Bruner,[3-4] and 
Dienes.[5-7]  The main idea is that at early stages of elementary learning, concrete operations 
facilitate the development of abstract thinking.   The concept goes beyond the use of practical 
examples that we typically use in the engineering classroom, and refers specifically to devices 
that can be manipulated with the hands.  As children progress into adulthood, their need for 
concrete examples is somewhat reduced due to the development of more advanced learning 
schemas, but this dependence is not eliminated.[1]  The kinds of thought possesses that 
characterize the use of concrete operations are thought to be utilized at all developmental 
levels.[2]  
 

Chemical engineering educational methods contain many examples of learning devices 
that can be categorized as manipulative in nature.  Many graphical solution methods were 
developed early in the last century, more out of necessity that any desire to improve learning 
strategies.  The McCabe-Thiele graphical solution of the binary distillation problem is perhaps 
the most familiar and widely used method.[8]  Another widely used technique is the Hunter-
Nash-Kinney method for solving liquid-liquid extraction problems.[9-10]  While reliable CAD 
software has been available for at least twenty years, it is still very common for students to be 
using these methods in the classroom.  The reason for this is that simultaneous equilibrium 
and mass balance equations can be visualized in graphical solutions.  Another reason is that 
the students learn the concepts better or more efficiently.   

 



   

Another example of a manipulative device is the slide rule.  For almost 350 years, the 
slide rule was perhaps the most important calculating tool available to the scientist and 
engineer.[11]  There is a natural curiosity on the part of many engineering students to learn 
about how they work.  Between 1965 and 1975, the slide rule as a computing tool was almost 
entirely replaced in the US by the electronic calculator.[12]  There were many reasons for this, 
including cost, ease of use, and precision.  The modern scientific calculator is inexpensive, and 
has facilities for solving differential equations, integrals, plotting, and spreadsheet operations.  
Certainly computing horsepower continues to become more portable, and many students have 
access to palm-top or laptop computers that are routinely brought to the classroom.  However, 
given the increase in computing power that is now available, construction of manipulative 
devices such as slide rules is fairly straightforward, and this is what we shall show here.  The 
end product, at the very least, is another graphical form for presentation of kinetic data.  In the 
extreme, the working slide rule can be easily transformed into a concrete, handheld device that 
can be used as a working manipulative. 
 
How a Slide Rule Works 
 
 Before getting into the details of our specific application, we first outline the basic 
operating principles.  There are essentially two reasons that conventional slide rules work.  
First, adding any two numbers is equivalent to adding distances.  Second, multiplying numbers 
is equivalent to adding logarithms.  We illustrate each of these two points with examples. 
 
 In the first example, we demonstrate a simple addition problem using two linear scales, 
shown in Figure 1a.  The top scale in the figure is the mirror image of the bottom scale.  Each 
scale is numbered from 0 to 11.  Figure 1b shows how the scales are used to solve the simple 
addition problem three plus seven.  The arrow on the lower left side of Figure 1b points to the 
three on the lower scale.  The left edge of the upper scale is aligned with the three on the 
lower scale.  The arrow on the upper right side of the figure points to the 7 on the upper scale.  
These are the two numbers we are trying to add.  The answer is then read from the lower 
scale directly below 7, namely, 10 (also indicated with an arrow on the lower right in the figure). 
 

Figure 1.  Addition Scales.  (a) Two mirror image linear scales.  (b)  Scales used 
to solve “3+7=10.”  (c)  Scales used to solve “1.4+5.5=6.9.” 

(a) 

(b) 

(c) 



   

Larger problems can be accommodated by using multiples of ten.  The scales in Figure 
1 might also represent 0 to 110, in which case Figure 1b shows 30+70=100.  Also note that 
fractions can be added by estimating between the tick marks.  Figure 1c shows the addition of 
1.4 + 5.5 to obtain 6.9.  The right arrows in this case are emphasized with a dashed line 
“crosshair” to facilitate estimating the answer.  Fractional precision is limited by our ability to 
visualize the distances between the tick marks.  Clearly 14.01 is inappropriate estimate, but 
14.1 might be achievable with a good eye and some extra tick marks.  Subtractions are just the 
inverse of additions, and we run the problem backwards.  For example, in Figure 2b, moving in 
sequence from the lower right arrow to the upper right arrow to the lower left arrow would 
represent 10-7=3. 
 
 Multiplications are performed by adding logarithms.  Figure 2a shows two logarithmic 
scales.  The positions of the tick marks are given by the log of the numbers above the marks.  
As before, the top scale is just the mirror image of the bottom scale.  Figure 2b shows a simple  
multiplication.  The arrow at the lower left of Figure 2b points to 3.  The arrow on the upper 
right points to 7.  The dotted line cross hair crosses at 21, which is the product of 3 and 7, also 
indicated by the arrow at the lower right.  The inverse operation, division, is accomplished by 
working in reverse.  As another example, Figure 2c shows a sample problem involving 
fractions, namely 2.1x5.5=11.6.   As before, larger numbers are handled by scaling. 

 

(a) 

(b) 

(c) 

Figure 2.  Multiplication Scales.  (a) Two mirror image log scales.  (b)  Scales 
used to solve “3ä7=21.”  (c)  Scales used to solve “2.1ä5.5=11.6.” 



   

 
Construction Methods 
 
 To construct a slide rule scale, the positions of the tick marks must be carefully laid out 
on the page.  There are some choices here, depending upon available resources.  The 
simplest addition scales can be made with a piece of paper, a ruler, and a pencil.  The log 
scales can be drawn by hand using a calculator or a log table to determine the logs, although 
this work is greatly simplified with a computer and a spreadsheet.  In this work, PowerPoint 
was used to draw the scales and Excel was used to calculate the logs.  PowerPoint has the 
advantage of allowing us to set the size and position of the tick mark to within 0.01 inches.  
Similar freeware such as OpenOffice can also be used by Microsoft or Linux users.  In 
PowerPoint, start by drawing a short line, double click on the line, and then click the position 
tab.  You can then set the horizontal and vertical positions.  For a complete scale, the vertical 
positions of all of the tick marks are held constant, and the horizontal position is scaled to the 
log of the number that the tick mark represents. 
 

Start by deciding the numerical values of the tick marks, and take the logarithm of these 
numbers.  The logs are then placed at the appropriate position on the paper.  In our case, we 
would like the left-most tick mark to appear at 1.64 inches from the left edge of the paper, and 
the right most tick mark appears at 6.62 inches, where the dimensions were chosen arbitrarily.  
Using the scales in Figure 2 as an example, the smallest number is 1 and the largest is 100.  
The scale factor for converting logarithms to inches is then just (6.22-1.64)/(log10(100)-
log10(1))=2.29.  The distance to the edge of the paper needs to be added as a constant.   To 
facilitate the procedure, we have written the mapping in equation form as Equation 1 below: 
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In this equation, x is the log10 of the tick mark value, d is the right-most tick position on the 
paper, c is the left most position, a is the numerical value of the left-most tick, and b is the 
numerical value of the right-most tick. 
 
Construction of Kinetics Slide Rules 
 
  In the typical undergraduate chemical engineering reactor design course, the approach 
that is widely is to make a plot of the inverse of the reaction rate against the fractional 
conversion.[13]  This results in a plot of f(x) versus x, where f(x) = 1/r(x), and r(x) is the rate of 
the chemical reaction as a function of fractional conversion x.  This reciprocal-rate or inverse-
rate graph is then used to scale the volume of the chemical reactor.   The form of this plot is a 
completely natural consequence of the mass balance equation that describes the reactor.  The 
space-time of a CSTR, for example, is just the product of x and f(x) at some specified x.  The 
space-time of a PFR is just the integral of f(x) with respect to x from 0 to x.  To build a slide 
rule, one only needs to recognize that the kinetic data can also be graphed in one dimension, 
as linear distances on a piece of paper. 
 



   

We will consider as an example a first-order irreversible chemical reaction of the form 
A→ products.   We will also assume that the reaction is occurring in a constant density 
medium, such as an aqueous solution, in a mixed flow (CSTR).  For the special case of 
constant density systems, the space-time is given by the mole balance equation: 

 

 A

A

X1
k 1 X

τ =
−

 (2) 

 
The space-time τ is the volume of the reactor divided by the volumetric flow rate of fluid 
moving through the reactor.  The fractional conversion of A is XA, and is the moles of A reacted 
divided by the moles of A fed.  The first-order rate constant is k.  Taking the log of both sides 
produces 
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A
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Thus, finding the space-time is equivalent to multiplying two numbers, which is equivalent to 
adding the logarithms.  To construct a slide rule, we then just construct a table of 1/k and x/(1-
x) values, and taking the log of both sets of data, and plotting them in the manner shown 
above. 
   

The resulting scales for this example are shown in Figure 3.  The top scale is set to line 
up with .10 on the bottom scale, which corresponds to 1/k.  For a conversion of say .90, we 
can see that the resulting space-time is 90.  Since the upper scale begins with 0.01, the 
answer must be multiplied by this quantity, resulting in a final answer of .90.  We could have 
just as easily started the scale with 1 and used percent conversion.  The choice is arbitrary and 
is only dependent on the desired scaling.  The volume of the reactor is readily obtained by 
multiplying the answer by the volumetric flow rate. 

 

 
 

 

Figure 3.  First-Order CSTR slide rule, used to solve for the space time at 90% 
conversion when 1/k=.1. 



   

 Figure 4 shows a slide rule constructed from four different reactor design equations.  
Each of the four upper scales corresponds to one of the three basic chemical reactor design 
equations, batch, CSTR, or PFR.  Note that some of the design equations are identical in form 
but differ in terms of whether time or space-time is used as the design variable.  We have 
chosen zero, first, and second-order irreversible kinetics, although in principle, any kinetic form 
can be represented.  Thus, nine different cases are covered by this combined slide rule, which 
would be equivalent to making nine reciprocal rate plots.  Which scale to use is indicated in the 
upper table in the figure, and the corresponding characteristic reaction time is selected from 
the lower table.  Reading from the top scale, as an example, with 1/k=.1, at a fractional 
conversion of 0.73, a space time of ~.79 results in a CSTR or PFR.  In the batch reactor, this 
would be the reaction time.  

 
  

 
 

Figure 4.  Basic Reactor Slide Rule Scales.  Scales are lettered a-d, and the letter 
corresponds to the kinetics and reactor configuration, as indicated in the upper 
table.  The lower scale represents the characteristic time scale, as indicated in 
the lower table. 



   

The utility of the device in educational terms is in the representation of the 
kinetics/reactor system as a concrete manipulative device.  That is, the scales can be mounted 
on a physical device which is held in the hands and manipulated like a traditional slide rule, as 
shown in Figure 5 below.  Alternatively, the scales can be embedded into digital media to 
construct a “virtual manipulative.”  As for whether this methodology will enhance learning of 
reactor design theory, we have no data at this time, and this will be the subject of a future 
study.  However, initial student reaction has been very positive, and we have used this device 
as an exercise for outside of the classroom in student projects. 
 
 
 
 

 
 

 
 
Use of Multimedia 
 
 The use of drawing programs such as PowerPoint to lay out the scales provides a great 
deal of flexibility for designing multimedia or web applications, or classroom presentations.  
Simple “grouping” of the tick marks allows one to slide a scale back and forth using the mouse 
or arrow keys.  This allows for very rapid scale manipulations in front of the class.  When doing 
this, the arrow keys are excellent since they allow motion in only one dimension.  The scales 
can also be saved as a bitmap or jpeg image and used to construct virtual slide rules for web 
applications.  Also, plotting functions in Excel can also be used to make plots of tick marks 
directly, without the need to manipulate tick marks one at a time. 
 
 
 

Figure 5.  A prototype slide rule based on Figure 4.  Movable scales are made 
with transparency film, and the slides are held together in a file folder. 



   

Customized Use for Industrial Reaction Kinetics 
 
 A small hand-held tool could be useful for a plant engineer who wants to know an 
instantaneous estimate of reactor performance, as a “rule of thumb” measurement.  A device 
such as that proposed here can easily be customized for a wide range of chemical kinetics and 
reactor configurations.  We have constructed rules for reversible kinetics, variable volume, 
recycle, and variable temperature systems.  All that is required is that one knows the specific 
kinetic parameters for the reaction of interest.  The specific kinetic parameters for the system 
of interest can then be plotted directly onto a slide rule scale in the manner shown above. 
 

Literature Cited 
 
1.  Post, T., “The Role of Manipulative Materials in the Learning of Mathematical Concepts,” in 

Selected Issues in Mathematics Education.   Berkeley, CA:  McCutchan Publishing 
Corporation, 1981.   

2.  Piaget, J.  The Psychology of Intelligence.  Boston:  Routledge and Kegan, 1971. 
3.  Bruner, J. S., The Process of Education.  Cambridge:  Harvard University Press, 1960. 
4.  Brunner, J.S., Toward a Theory of Instruction.  Cambridge:  Harvard Univ. Press, 1966. 
5.  Dienes, Z.P., Building Up Mathematics.  London:  Hutchinson Educational, 1969. 
6.  Dienes, Z.P.,  “An Example of the Passage from the Concrete to the Manipulation of Formal 

Systems.”  Educational Studies in Mathematics, 337-353, 1971. 
7.  Dienes, Z.P., and Golding, E.W., Approach to Modern Mathematics.  New York: Herder and 

Herder, 1971. 
8.  McCabe, W.L., and Thiele, E.W., Ind. Eng. Chem., 17, 605-611, 1925. 
9.  Hunter, T.G., and Nash, A.W., J. Soc. Chem. Ind., 53, 95T-102T, 1934. 
10.  Kinney, G.F., Ind. Eng. Chem., 34, 1102-1104, 1942. 
11.  Maor, E., e:  The Story of a Number.  Princeton:  Princeton University Press, 1994. 
12.  Williams, K.R., J. Chem. Educ., 2000, 77, 436-437. 
13.  Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; John Wiley and Sons: New York, 

1998, page 92. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



