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Abstract  
 Advanced model-based experiment design techniques are a reliable tool for rapid 
development, refining and validation of process models.  When dealing with complex 
reaction networks, the current techniques show convergence problems if one tries to plan a 
set of experiments for the estimation of all the parameters. In a previous work (Franceschini 
& Macchietto 2005), a methodology to overcome this problem had been proposed and 
described through the application to a case study (a biodiesel production process). The aim 
of this paper is to present the results of the parameter estimation, which was carried out 
using the data collected under the optimally designed experimental conditions. In the light 
of these results, the procedure proposed for the experiment design will be assessed in term 
of advantages and limitations, and possible solutions to overcome the problems will be 
mentioned.  Regarding the case study, the model was almost completely validated in just 
one iteration of the experiment design procedure and was then used for an optimisation 
study, the results of which will be presented here in order to identify the effect of the most 
important operating variables on the process yield. 
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1. INTRODUCTION  
 Dynamic mechanistic modelling has become a key activity in process engineering: 
its main advantage is the possibility of gaining a better understanding of the different 
phenomena which occur within the system under investigation. Therefore, building high 
quality and validated models of process systems has become a step not to be ignored for 
many applications such as model-based product and process design, control and 
optimisation.  By expressing the underlying phenomena in a mathematical form, these 
detailed models can be used to improve product, process and plant performances in a wide 
range of applications. On the other hand, collecting the data which are required to build and 
validate a model can be costly, both in terms of money and time. Therefore, there is a need 
to develop these models in a systematic way in order to maximise the information 
obtainable from each experiment and to minimise the number of analyses, the cost of 
materials and the time required. 
 
 When building these models, one uses a priori knowledge such as physical, 
chemical or biological laws to propose one or more possible models. These laws dictate the 
model structure and such models invariably contain adjustable parameters that may have 
physical meaning. Typically, one desires to establish if it is at all possible to determine their 
values.  If so, the next step is to estimate the parameters with the maximum precision and 
to validate their values and the model statistically. This second aspect involves adequacy 
tests for the model (i.e. how well the model explains the observed data) and tests to check 
whether or not a parameter is well determined in the model (t-test) (Asprey 1999). For the 
statistical verification of detailed dynamic models, Asprey and Macchietto (2000) have 



presented a systematic model-building procedure. This approach is an iterative method 
which involves: 

 proposing a mathematical parametric model 
 designing optimal experiments using the model;  
 estimating the model parameters using the experimental data collected under the 
optimally planned conditions; 

 checking for model adequacy.  
The whole procedure must be repeated until a satisfactory degree of precision in the model 
predictions is achieved.  
 

A key step within this approach is the design of experiments so as to obtain the 
maximum information from the experimental apparatus being modelled. In particular, 
model-based experiment design aims at assisting a modeller/experimenter in devising 
experiments that will yield the most informative data, in a statistical sense, for use in 
parameter estimation and model validation.  In mathematical terms, given an initial model 
and assumed parameters, the aim is to minimise the expected inference region of the 
parameters, i.e. to make the elements of the parameters variance-covariance matrix small.  
An experiment design calculation thus involves minimising some metrics of this matrix by 
choosing a set of experiment decision variables (length, time-varying and time invariant 
controls, initial conditions, sampling times, etc.) subject to equality or inequality constraints 
(Asprey & Macchietto 2000).  Various real-valued functions have been suggested as 
metrics for the parameters variance-covariance matrix (Asprey & Macchietto 2002). The 
most common criteria are four: 

1. D-optimality which minimises the determinant of the covariance matrix and thus the 
volume of the joint confidence region; 

2. E-optimality which minimises the largest eigenvalue of the covariance matrix and thus 
the size of the major axis of the joint confidence region; 

3. A-optimality which minimises the trace of the covariance matrix and thus the 
dimensions of the enclosing box around  the joint confidence region; 

4. Modified E-optimality which minimises the condition number of the covariance matrix 
(i.e. the ratio between the maximum and minimum eigenvalue) and thus makes the 
joint confidence region as spherical as possible (Versyck et al. 1997). 

For a detailed discussion of these criteria, reference is made to Walter and Pronzato 
(1990).  
 

Despite the importance of the problem, there has been a relatively modest amount of 
work in the past on the application of experiment design techniques to dynamic systems. 
The concepts and some results were presented in the late 1980’s and early 1990’s for 
general mechanistic models consisting of differential and algebraic equations (Espie 1986; 
Espie & Macchietto 1988; Zullo 1991). More recent work on the application of these 
techniques has been reported by Körkel et al. (2004), Bauer et al. (2000) and Versyck et al. 
(1997, 1998), who applied these methods to investigate the unstructured growth kinetics in 
biological systems.  A series of studies carried out recently by Asprey et al. (1999, 2000, 
2002) has significantly improved the methodology and allowed the inclusion of a routine for 
experiment design for parameter precision in a commercially available software package as 
gPROMS (Process System Enterprise Ltd.) (Process System Enterprise 2004).   

 
1.1 Objectives and structure of this paper 
 We applied these experiment design techniques to a model describing a case study 
of practical interest: a biodiesel production process. The aim was to identify the parameters 
of the kinetic network with the maximum precision and thus validate the model. This case 



study was chosen on purpose because was very suitable for the application of the 
methodology which we wanted to develop. Our objective was to delineate an experiment 
design problem appropriate for complex kinetic networks (in the biodiesel case there are 
three consecutive and competitive reactions). When dealing with these types of kinetic 
schemes, usually the high number of parameters, the correlations between them and the 
form of the equations involved (such as Arrhenius’ equations) create convergence problems 
if one tries to plan a set of experiments for the estimation of all the parameters of the 
network. In order to overcome this problem, in a previous paper (Franceschini & Macchietto 
2005) we had proposed a solution, which will be briefly described in section 1.2. This 
solution requires the planning of experiments for the estimation of individual, couples or 
groups of parameters with the others fixed at their current values and uses sensitivity 
analysis to identify which parameters can be estimated with the data collected from a single 
optimal experiment.   
 
 After the planning of the required optimal experiments and the subsequent data 
collection in our laboratory, a last step remained to be tackled in order to validate the 
model: the estimation of the parameters using the new data. In a model building procedure, 
such as that formalised by Asprey and Macchietto (2000), parameter estimation is a stage 
which logically follows the experiment design calculations and the experimental work. This 
paper deals with the problems and the results of this essential step.  
It is also worthy to note that, only after the parameter estimation, the procedure which we 
had proposed for the experiment design could be assessed and some conclusions about its 
efficiency could be drawn. Thus, the aims of this paper were three: 

 to highlight problems which can occur in the parameter estimation of highly nonlinear 
systems, such as those which make use of Arrhenius’ equations, and to describe the 
solution proposed; 

 to present the results of the parameter estimation for the purpose of model validation 
 and to use these results as evidence of the advantages and of the problems that have 

still to be solved in our methodology.  
 
 Regarding the structure of this paper, the next section contains a brief summary of 
the work previously carried out. This is essential to understand what will follow. Then, 
section 2 describes the procedure adopted for the parameter estimation. This was 
performed in two steps: an individual estimation of the parameters according to the results 
of the experiment design (see section 2.1) and a global estimation of all the parameters 
together (see section 2.2). Section 2.3 contains a discussion about the validity of the 
methodology adopted for the experiment design.  In the end, an application of the validated 
model is presented in section 3, which reports the results of a preliminary optimisation 
study. This was carried out to investigate the effect of the most important operating 
variables on the yield of the system. 

 
1.2 Background 

Biodiesel would be an ideal substitute for the conventional diesel fuel if only it was 
more competitive economically. Efforts have been made to reduce its cost by optimising its 
production processes. The subject of our study is one of these processes: the 
transesterification of a vegetable oil (rapeseed oil) with methanol in presence of an alkali 
catalyst (sodium methoxide) under mild pressure conditions in a batch reactor is. A previous 
experimental work was carried out in 2002 in order to maximise the conversion of this 
process (Lemieuvre 2002). Then, the experimental results of this study were used by 
Franceschini (2003) in order to build a mathematical model which reproduces the physical 
behaviour of this system. The estimation of the kinetic parameters involved in the model 



proved to be difficult and problematic: only the equilibrium constants could be estimated. 
Simulations results showed that a larger number of more informative data were required in 
order to enable a better estimation of the kinetic parameters (Franceschini et al. 2004). 
Almost all the data, which were collected in the previous study, were concentrated in the 
region controlled by the equilibrium and, therefore, contained no useful information on the 
dynamics of the system. Consequently, new data were necessary and experiment design is 
an adequate technique to obtain as informative data as possible.   
 

The model developed by Franceschini (2003) uses the kinetic scheme proposed by 
Noureddini and Zhu in 1997. According to these authors, the reaction consists of three 
consecutive and reversible steps:  
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where TG, DG and MG are, respectively, the tri-, di- and mono-glycerides and M, G and E 
indicate methanol, glycerol and the mixture of methyl esters which form biodiesel. The 
model described in detail most of the phenomena which occur in the experimental reactor 
(for example phase equilibrium, temperature varying with time, methanol evaporation, 
energy input and losses) and only the kinetic parameters were not known; the values 
provided in Noureddini & Zhu (1997) were used. 
 

Modelling, simulation, parameter estimation and experiment design were all carried 
out using gPROMS (Process System Enterprise 2004), interfaced with two databases, 
Infodata and DIPPR (AIChE 2004), and a program, Multiflash (Infochem Computer 2004), 
for the calculation of the thermo-physical properties of the reaction mixture.  
 
1.2.1 Experiment design problem  

The results of the calculations of a model-based experiment design problem allow a 
set of new optimal experiments to be planned. In our case, however, we wanted to carry out 
these experiments with the available experimental and analytical setup. The goal was to 
investigate the potentialities of the methodology even in experimental conditions which are 
not the best. This led to an interesting experiment design problem, which coupled a 
complex reaction network (three consecutive and competitive reversible reactions) with 
many practical constraints and limitations of the apparatus, such as, for example, the non-
isothermal conditions. Non-isothermal experiments are not optimal for kinetic studies and 
complicate the mathematical resolution of the problem because of the use of Arrhenius’ 
equations.  All these restrictions and the high number of parameters to be estimated did not 
allow a set of experiments for the global estimation of all the parameters to be designed. 
The only realizable solution was to plan experiments for the estimation of individual, 
couples or groups of parameters (not more than three parameters, otherwise convergence 
problems occurred) with the others fixed at their current values. The criterion chosen to 
group parameters was to try to plan a single experiment for those parameters which 
showed the maximum of the normalised sensitivity in the same time interval. Advantages 
and limitations of this approach will be discussed in section 2.3 after the presentation of the 
parameter estimation results. 
 

Table 1 reports the experimental conditions of the six optimally designed 
experiments, which were performed in our laboratory in order to collect the data required for 
the parameter estimation. 



Table 1. Optimal experimental conditions for the estimation of the transesterification parameters 
 EXP.G EXP.H EXP.I EXP.L EXP.M EXP.N 

Parameters estimated A1 A2 & A6 A3 & A4 A5 E1,E3 & E5 E2,E4 & E6
Process time (min) 19 94 71 64 27 76 

T max (K) 310 368 340 332 316 341 
Amount of oil/ MeOH (mol/l) 3/23.76 3/14.57 3.28/16.96 3.18/14.98 3.95/12 3.95/12 

Number of samples 8 12 8 14 8 8 
Variables measured E E E E MG, E G, E 

Number of analyses (EP+GP) 8+8 12+12 8+8 14+14 8+8 8+8 
Precision (t-value) 36.59 13.4/8.5 9.64/5.2 24.89 96/76/49 12.6/21/52
Reference t-value 1.895 1.812 1.943 1.771 1.771 1.771 

2. PARAMETER ESTIMATION 
 The parameter estimation was carried out in two steps. The first stage was an 
individual estimation: the parameters were estimated singly or in pairs or in groups of three 
(depending on how they had been coupled during the experiment design), using the data 
only of the specifically designed experiment and with the other parameters fixed at their 
current values. Then, a global estimation was performed using the data of all the optimal 
experiments and the values found in the previous step as starting points. The problems 
which emerged and the solution proposed to overcome them will be described in section 
2.2. 

2.1 Individual estimations 
 According to the experiment design results, it was possible to estimate all the 
parameters with enough precision, although the t-test results were almost always less than 
the predicted ones (compare the second and third column of Table 3). This is due to the 
fact that the values of the variance used during the experiment design study for the three 
measured variables were too small. A standard value of 0.5 was adopted for all the 
variables due to lack of knowledge about the real experimental errors correlated with the 
analytical procedures. 
 
 In all the estimations, the constant variance model (σ2 = ω2) was used. In order to 
check the validity of this assumption, some attempts were carried out with the more 
complex heteroscedastic model for the variances of the measured variables. This model 
can be expressed as:  

γεωσ )z( 222 +⋅=  (2)  

where z is the measured value and ε is a very small but non-zero number calculated by the 
solver. This ensures that the variance has a meaningful definition for measured values that 
are equal to zero or very small.  When this model was used in the estimations, the value of 
γ calculated by gPROMS was always equal to zero. This means that the heteroscedastic 
variance model reduced to its respective constant variance model. 
 
 The initial guesses of ω for the three responses in the constant variance model 
were assumed equal to the variances experimentally measured. Since these variances took 
into account only the experimental errors of the analyses, the upper bounds for ω were 
imposed a little higher in order to consider the errors in the reproducibility of the 
experiments as well. These errors were not experimentally measured. 
 
 Table 2 shows the results obtained for the twelve parameters involved in the model. 
The table reports the final value (FV) of each parameter together with the 95% confidence 



interval (CI) and the initial guess (IG), the lower (LB) and upper bound (UB). The last two 
columns contain the initial and final value of the objective functions (OF), which were 
minimised in each estimation. 

Table 2. Results of the individual parameter estimations  

Parameter FV 95% CI IG LB UB OF 
(initial value) 

OF 
(final value) 

A1 0.0353 0.003912 0.2157 0.01 1 5733.88 13.51 
A2 0.01121 0.001924 0.00312 0.0001 0.1 700.644 22.93 
A3 3098 1003 33320 1000 105 1284.96 11.68 
A4 1291 508.2 77.92 0.1 104 1284.96 14.22 
A5 0.003338 0.0005788 0.002933 0.0001 0.01 116.089 33.66 
A6 0.005371 0.002097 0.009905 0.0001 0.1 700.644 22.93 
E1 4814 840.3 5892 1000 12000 36390.9 45.73 
E2 4303 658.5 4269 1000 12000 1152.6 41.85 
E3 9032 100.5 9280 3000 15000 36390.9 45.73 
E4 6769 108 6760 1000 15000 1152.6 41.85 
E5 4271 73.34 3995 1000 10000 36390.9 45.73 
E6 5328 125.8 5532 1000 12000 1152.6 41.85 

   
 In order to check the reliability of the estimation, two statistical tests are 
automatically performed by gPROMS (Process System Enterprise 2004b). The t-test is 
used to establish the statistical significance of the estimation: the t-value shows the 
percentage accuracy of the estimated parameters with respect to the 95% confidence 
intervals. The test is satisfied when the calculated value is larger than the reference t-value.  
The χ2 test concerns the goodness of the fit and is verified when the weighted residual is 
less than the 95% reference χ2-value.  Table 3 reports the results of the tests performed for 
each parameter and, as we can see, both tests were always satisfied. 

Table 3.  Results of the statistical tests for the individual estimations (the third column  
contains the t-values as predicted by the experiment design calculations) 

Parameter 95% t-value 95% 
Predicted t-value

Reference 
t-value (95%) Weighted residual χ2value 

(95%) 
A1 9.023 36.59 1.943 8 12.592 
A2 5.826 13.4 1.833 12 16.919 
A3 3.087 9.64 2.132 6 9.488 
A4 2.541 5.2 2.015 9.085 11.07 
A5 5.767 24.89 1.771 20.82 22.362 
A6 2.561 8.5 1.833 12 16.919 
E1 5.728 96 1.706 33.971 38.885 
E2 6.535 12.6 1.708 32 37.652 
E3 89.9 76 1.706 33.971 38.885 
E4 62.7 21 1.708 32 37.652 
E5 73.34 49 1.706 33.971 38.885 
E6 42.37 52 1.708 32 37.652 

 
2.2 Global estimation  
 The individual estimations confirmed the results which were expected from the 
experiment design; the values found from these calculations were then used as starting 
points for a global estimation of all the parameters. The data of all the optimal experiments 
were employed.  
 
 The first results obtained revealed high correlations between the parameters. These 
correlations made the convergence problematic and prevented the parameters from being 
properly identified (the t-tests showed inadequate values).  The cause of these problems 



was sought in the mathematical formulation of the model. It is well known that a model with 
the Arrhenius’ law directly incorporated can make the estimation of the parameters very 
hard because of the high correlation between pre-exponential factors and corresponding 
activation energies. In order to overcome this problem, three different solutions were tried: 

 a re-parameterisation of the model using a reference temperature (Asprey & Naka 
1999),  

 a re-parameterisation of the model by means of an approximation of the exponential 
function with a power function  

 and a linearization of the Arrhenius’ equations.  
 
 The first solution required the Arrhenius’ equation to be replaced with the following 
expression: 
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and Tref is a mean reference temperature.  This solution proved to be inadequate. Although 
efficient to overcome the correlation problem, this re-parameterisation generated a new 
difficulty: the scaling problem became significant and the convergence was hindered again. 
In this case study, the pre-exponential factors were much smaller than the activation 
energies because of the units of measurement used in the model (the pre-exponential 
factors were expressed in m3/(mol·s)). The application of the re-parameterisation made the 
difference between the values of the parameters Ej and Aj

* larger and, therefore, the 
mathematical solution of the problem was not helped at all. 
 
 The second solution required the exponential function to be approximated with a 
power function: 
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where b and c are parameters which can be found by fitting the exponential curves.  The 
Arrhenius’ equation was therefore replaced with the following expression: 

c*
jj TAk ⋅=  (6) 

where  

bAA j
*
j ⋅= . (7) 

This solution proved to be satisfactory: an estimation of the parameters Aj
* and c was found 

with enough precision for most of the parameters. The only drawback of this approach is 
the impossibility to go back, after the estimation, to the values of the original parameters. 
 
 The last solution simply required the Arrhenius’ equation to be replaced with the 
following linear equation: 

T/EAtcos j
*
jj −=  (8) 

where  



)Aln(A j
*
j =   (9) 

and  
)texp(cosk jj = . (10) 

This was the approach chosen for the global estimation. 
 
 Despite the use of this linearization or of the re-parameterisation of the second 
approach, the global estimation of the twelve parameters still showed some difficulties. So 
the estimation was carried out in two steps: first, only the pre-exponential factors (Aj

*) were 
estimated with the activation energies fixed at their initial values. Then, the activation 
energies were estimated with the pre-exponential factors fixed at the values found in the 
previous step. A third iteration was not necessary because no further improvements were 
obtained with a re-estimation of all the parameters together  using the values found in the 
previous two steps as starting points.  
 
 The global estimation here described was carried out using the data of all the 
optimal experiments except Exp.G (see Table 1).  This choice needs to be justified. A 
recent experimental work, carried out in our group, showed that the initial mixing of the two 
liquid phases, where the reactants are at the beginning of the transesterification, took up to 
two minutes for small volumes such as 50-90 ml. We can, therefore, expect a longer time to 
be required to obtain a good mixing of four or more litres of reaction mixture. When the 
experiment design study was performed, this information was not available and, therefore, 
one minute was chosen as the minimum time for the first sampling point.  Exp.G required all 
its data to be collected in the first 18 minutes of the reaction. Therefore, we preferred to 
discard these data because we could not be sure that dishomogeneities in the mixing could 
have affected them. 
 
 Table 4 shows the results of the global estimation and the values of the statistical 
tests. We can see from the χ2 tests that the fits were always adequate (this means that the 
model was able to reproduce the experimental data). Figure 1 shows the goodness of the fit 
graphically.   

Table 4. Results of the global parameter estimation  

Parameter Final value 
95% 

confidence
interval 

95% 
t-value 

Reference
t-value 
(95%) 

Weighted 
residual 

χ2value 
(95%) 

A1
* 0.4865 54.75 4.529·10-2

A2
* -6.961 518.6 1.995·10-2

A3
* 9.6362 0.9103 10.59 

A4
* 2.7263 1.598 1.706 

A5
* -6.88 0.4594 14.98 

A6
* -3.861 0.5313 7.267 

1.69 45.333 49.802 

E1 5447 2.75·105 1.982·10-2

E2 4947 7.73·105 6.405·10-3

E3 9296 293.2 31.7 
E4 6792 872.6 7.783 
E5 3994 187.7 21.28 
E6 5487 346 15.86 

1.68 58.345 60.481 

 
 Eight parameters out of twelve were identified with enough precision as shown by 
the t-tests results and by the confidence intervals in Table 4.  The parameters of the first 
reaction step (A1, A2, E1 and E2) were not statistically validated. This could have been 



caused by two different problems: correlation and lack of data for the first minutes of the 
reaction. Sometimes in multi-parameter models, a t-value may be low because of the high 
correlations between parameters. From the correlation matrix results (not shown here), a 
high correlation between the corresponding parameters (A1 with E1 and A2 with E2) can be 
noticed, as can be also seen from the confidence ellipsoids in Figure 2. 
 
 Regarding the second problem, the data which were collected in the first minutes of 
the reaction were discarded for the reason above-mentioned. Unfortunately, as shown from 
the sensitivity analysis, the model is particularly sensitive to parameters A1 and E1 exactly at 
the beginning of the process, where no sure data could be collected. We can therefore 
conclude that, with the available experimental apparatus, the proper identification of these 
parameters can be really difficult. One possible solution could be to use a higher mixing rate 
at the beginning of the process to shorten the time required to obtain a homogenous phase. 
However, this hypothesis must be verified with some additional experiments before 
proceeding with another experiment design aimed at planning experiments for the 
estimation of these four parameters. 
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   Figure 1a. Comparison between experimental 
        data and simulated profiles for the ester 
                 content of Exp.L and Exp.M 
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   Figure 1b. Comparison between experimental  
            data and simulated profiles for the 
            monoglycerides content of Exp.M 
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Figure 2. 95% confidence ellipsoids for two pairs of corresponding parameters 

(A1 with E1 and A2 with E2) 

 
2.3 Discussion 
 From the comparison between the final values of the parameters obtained with the 
individual estimations (Table 2) and with the global estimation (Table 4), it can be seen that 
almost all of the parameters (except A5 and A6) show very different values. This is a clear 



indication that interactions between parameters are significant.  
 
 It is possible now to extract some conclusions from all this work. The approach 
proposed for the experiment design (to plan experiments for the estimation of groups of 
parameters with the others fixed at their current values) has been demonstrated valid but 
requires further developments. Its main advantage is the capability to deal with complex 
reaction networks: the currently available experiment design techniques are affected by 
convergence problems when the number of parameters is high and there are correlations 
between them. In most of the cases, no experiments can be planned in these situations 
(our biodiesel case is an example). Nevertheless, there is a limitation in the procedure 
proposed: the significant correlations between the parameters are neglected during the 
planning of the experiments but their effect appears during the estimation and makes the 
identification of the parameters more difficult.  Therefore, the current experiment design 
technique must be modified to overcome this drawback of the procedure and this is under 
investigation at the moment.  
 
 A short explanation of the basic ideas of this improvement is given here. At the 
moment, experiment design is aimed at optimising the information content of the 
experiments. For example, regarding the sampling points, the method tries to collect them 
in the time interval around the maximum of the curve of the normalised sensitivity. Only the 
sensitivity of the responses to the parameters under investigation (i.e. the parameters for 
which the new experiment is going to be planned) is taken into account. The technique 
does not consider the effect of the other parameters in this interval. It is possible (as we 
have seen in the previous sections) that the experiment planned for the estimation of one 
parameter is highly influenced by the values of the other parameters and this will emerge 
only during the estimation. Therefore, the method can be improved so as to take into 
account not only the sensitivity of the responses to the parameters under investigation but 
also to all the other parameters of the model. In other words, regarding the previous 
example, data should be collected only when the sensitivity is high respect to the 
parameter/s under consideration and low respect to the others. This could lead to the 
identification of intervals for the data collection where the normalised sensitivity has not its 
maximum value, but should permit a better decoupling between the parameters than the 
current technique. Therefore, a trade off will have to be found between information content 
of the experiments and parameter decoupling.  

 3. OPTIMISATION STUDY 
 Although four of the model parameters were still not statistically identified after the 
first iteration of the experiment design strategy, the partially validated model was used for a 
preliminary optimisation study.  A deep investigation of the influence of the various 
operating conditions on the process yield was the main aim of this study. In the next 
experimental work, which we are going to plan, some of the optimised experiments, here 
presented, will be performed. The objective will be to verify experimentally if the predictions 
of the model are or not correct. In this way, it will be possible to have an idea of the 
significance of the four parameters, which are still not statistically validated, and to decide 
on the necessity of another experiment design study for the identification of these 
parameters. 
  
 The influence of four important operating conditions was analysed in a series of 
dynamic optimisations:  

1. the process time,  



2. the reaction temperature profile,  
3. the molar ratio between methanol and oil  
4. and the flow rate of the methanol feed (semi-batch charge).  

The combined effects of these variables were taken into account as well.  The gPROMS 
optimisation routine (Process System Enterprise 2004b) was used to perform these studies 
with a tolerance for the optimiser of 10-6 (the tolerance for the solver of the DAE equations 
system was set at 10-10). Finally, the objective function to be maximised was the ester yield 
calculated with respect to the limited reagent: the oil.  

3.1 Process time effect 
 The reaction time effect was studied with a constant molar ratio between alcohol 
and oil, a 3 to 1 ratio (the stochiometric one).  The cases T and T1, shown in Table 5, are 
suitable to illustrate the influence of the process time on the ester yield, because the only 
differences between them were the initial guess and the upper bound for the process time 
(respectively 115 and 167 minutes for the first case versus 65 and 117 for the second one).  
We can see that no observable effect is obtained on the objective function by doubling the 
process duration. In case T1, the equilibrium was reached with steeper temperature slopes 
(this was a consequence of the optimiser effort to maximise the objective function in a 
shorter time), whereas, in case T, a temperature profile with more moderate increases was 
used. Both cases gave the same results. 

3.2 Temperature effect 
 The temperature effect was studied with a constant molar ratio between alcohol and 
oil, a 3 to 1 ratio (the stochiometric one).  The reaction is globally exothermic; therefore, an 
upper limit (see the fourth column of Table 5) had to be imposed in order to avoid an 
excessive rise in the temperature. Although higher temperatures would probably have led to 
higher yields, they were not investigated for two reasons. First, the necessary heating would 
have become too expensive. Second, the loss of methanol, in terms of molecules not any 
more available for the reaction, would have become too important because of the increase 
in the evaporation. Two variables were optimised: the temperature profile (modelled as a 
piecewise linear control) and the process time (PT).  The results of all the significant runs 
are shown in Table 5 and will be now discussed. 

Table 5. Temperature and time effect (UB is the upper bound) 

Case UB for PT 
(min,sec) 

PT 
(min, sec) 

UB for T 
(K) 

Final T 
(K) 

Initial profile
for T 

Final 
yield 

T 166’40’’ 130’58’’ 400 400 Yes 65.50% 
T1 116’40’’ 57’07’’ 400 400 Yes 65.50% 
T3 116’40’’ 71’08’’ 340 340 Yes 63.65% 
T4 116’40’’ 58’48’’ 380 380 Yes 65.81% 
T8 116’40’’ 84’41’ 380 380 No 66.18% 

 
 Regarding the temperature effect, the results of cases T1 and T4 can be compared 
(they have a similar process time, so the difference in the objective function value is caused 
only by the difference in the temperature). We can see that, if we lower the upper limit for 
the temperature from 400 K (case T1) to 380 K (case T4), the loss in the ester yield is about 
0.7%. A rise in the final temperature from 340 K (case T3) to 380 K (case T4) causes an 
increase in the objective function of about 2.2%. We can, therefore, conclude that the 
temperature increase has a positive effect on the ester yield, but this impact tends to zero 
after a certain threshold (~380 K in this case). This could be expected because the global 
reaction is only slightly exothermic and, therefore, the temperature effect alone can not be 
sufficient to improve the process significantly.  



 All the runs, except case T8, were carried out giving an initial profile for the 
temperature to the optimiser in order to help the solution process. The results of case T8 
were achieved without the use of an initial profile and we can see that the yield obtained is 
the highest. The resultant temperature profile is, however, not realizable in practise 
because in the last step requires an increase in the temperature of about 0.7 °C/s, which is 
too high for the heating system available in our reactor. Nevertheless, it is interesting to 
note that only such a steep increase in the temperature of the final interval of the process 
can improve the yield further. This sheer rise in the temperature of the last step can be 
observed in almost all of the runs performed (even with different molar ratios between 
methanol and oil). However, when an initial temperature profile is given to the optimiser, the 
slopes obtained are always feasible. 
 
 All the comments reported in this section were confirmed by the studies carried out 
with different molar ratios between the reactants and, so, can be considered independent 
from this other important variable. 

3.3 Molar ratio effect 
 In order to study the effect of the methanol excess on the process yield, the 
optimisations described above were repeated using three different molar ratios (in the initial 
charge) between alcohol and oil (4:1, 5:1, 6:1). Higher ratios were not investigated because 
a too large amount of unreacted methanol makes the final separation too difficult. The 
results are shown in Table 6. A molar ratio of 6:1 and a final temperature of 378 K allow a 
final yield of about 86% to be obtained in just hour, with also a significant improvement in 
the batch productivity (compared to the other cases). When the initial amount of methanol 
was added as an additional operating variable to be optimised (last row in Table 6), the 
same optimal molar ratio and the same final temperature were obtained. In this case, only 
the initial amount of oil was fixed during the optimisation. Therefore, the optimal value of the 
initial moles of methanol, found after the convergence, allowed the optimal molar ratio 
between the reactants to be calculated. An upper limit for the initial moles of methanol was 
imposed in order not to exceed the maximum 6:1 ratio between alcohol and oil. 

Table 6. Molar ratio effect 

MR Process time
(min,sec) 

Final T
(K) Final yield Productivity 

kgester/(kgoil_feed⋅h) 
3:1 58’48’’ 380 65.81% 0.675 
4:1 58’20’’ 380 75.24% 0.77 
5:1 82’17’’ 380 81.56% 0.60 
6:1 57’08’’ 378 85.78% 0.906 

6:1 (Opt) 75’19’’ 377.6 85.78% 0.69 
 
 These results are in agreement with the findings of the previous study (Franceschini 
et al. 2004), where an optimal molar ratio of 6:1 and a final temperature of 360 K allowed 
the maximum yield to be obtained in just one hour. 

3.4 The methanol injection effect (fed-batch operation) 

 This variable was studied with the amount of methanol initially charged in the 
reactor (M0) fixed at two different values: equal to 3.8 mol (which corresponds to an 
alcohol/oil molar ratio of 1:1) in the first case and almost null in the second one. The 
remaining methanol was fed with an optimised flow rate (see Figure 3a). Table 7 shows the 
results which were obtained.  In the last case reported in the table, the initial amount of 
methanol (M0) was an additional variable to be optimised.  



Table 7. Methanol injection effect 

Case M0 (mol) Process time
(min,sec) T (K) Final yield Productivity 

kgester/(kgoil_feed⋅h) 
1 3.8 67’55’’ See Fig. 3b 85.71% 0.77 
2 0.1 72’54’’ See Fig. 3b 85.80% 0.71 
3 0.101 (Opt.) 64’57’’ See Fig.3b 85.79% 0.814 
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     Figure 3a. Optimal flow rate profiles for the 
                  three cases of Table 7 
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      Figure 3b. Optimal temperature profiles for 
                   the three cases of Table 7 

   
 In order to avoid an excessive methanol charge in the reactor, some limits for the 
volume of the liquid mixture and for the alcohol amount were imposed. For example, the 
maximum allowed amount of methanol in the reactor corresponds again to a 6:1 alcohol/oil 
molar ratio. Since the initial amount of oil was fixed at 3.8 mol, methanol charged in the 
reactor at the beginning (M0) plus methanol fed with the optimised flow rate could not 
exceed 22.8 mol. 
 
 The results are similar to the findings of the previous section for what concerns the 
process yield; in all the cases, the maximum allowed alcohol excess was used and almost 
the maximum temperature was reached. Therefore, no significant differences could be 
obtained in the process yield by modifying the feeding policy: batch or fed-batch operations 
gave the same results. 
 
 However, if the fed-batch operation is chosen, the results show that it is better to 
charge all methanol during the process according to the optimised flow rate (case 2) than to 
charge some methanol at the beginning and then to start with the fed-batch operation (case 
1).  Case 3 is a confirmation of this fact: if the initial amount of methanol is added as an 
additional variable to be optimised (as in case 3), the optimised value found by gPROMS for 
M0 is the minimum amount allowed (0.1 and not zero in order to avoid numerical problems).  
 
 These results contrast in part with the findings of the previous study (Franceschini 
et al. 2004), where the fed-batch operation was shown to need a longer reaction time with a 
very remarkable worsening of the productivity (three times lower).  In both cases the fed-
batch operation was demonstrated not to improve the reaction yield significantly. In this 
study, there is still a lengthening of the reaction time (but more moderate) probably due to 
the feeding of methanol, which delays the reaching of the equilibrium. The remarkable 
worsening of the productivity observed in the previous study was probably caused by the 
dynamic behaviour of the system not being well modelled with the experimental data 



available at that moment. This problem has been dealt with in this study using an 
experiment design approach as described in the previous sections. 

4. CONCLUSIONS 
 Experiment design techniques are a powerful tool to reduce the amount of 
experimental work required for model validation. An intelligent use of these methods allows 
the experiments with the maximum information content to be selected. The application of 
these techniques usually requires an iterative procedure, in particular if the initial values of 
the parameters are far from the true ones.  In this paper, model-based experiment design 
has been applied to a model describing a biodiesel production process in order to identify 
the parameters of its complex kinetic network (three consecutive and competitive 
reactions). The high number of parameters and the form of the equations involved 
(Arrhenius’ equations) generated convergence problems when we tried to design a set of 
experiments for the estimation of all the parameters of the network. The solution proposed 
in a previous paper (Franceschini & Macchietto 2005) requires the planning of experiments 
for the estimations of individual, couples or groups of parameters with the others fixed at 
their current values and uses sensitivity analysis to identify which parameters can be 
estimated with the data collected from a single optimal experiment. As demonstrated in this 
paper, the approach proposed is valid but requires further developments because does not 
take into account the correlations between the parameters and this creates problems during 
the subsequent global estimation. A different formulation of the objective function or some 
modifications of the experiment design algorithms will be necessary to solve this problem 
and this is the subject of our current and future work. 
 
 However, using the procedure proposed, it was possible to validate the model 
almost completely in just one single iteration. Only the parameters of the first reaction step 
were not identified successfully (from a statistical point of view). Data in the first reaction 
minutes are required to estimate these parameters properly. The reactor used was 
demonstrated not to be the best apparatus to collect data in the initial part of the reaction 
because of the mixing difficulties explained in section 2.2. Therefore, it should be probably 
better to investigate the use of other types of reactor before planning the second iteration of 
the experiment design. 
 
 An optimisation study was performed using the new model (even if it was not 
completely validated) in order to investigate the influence of the various operating 
conditions on the process yield. It emerged that the amount of methanol is the variable 
which must be modified in order to achieve higher yields. The effect of the temperature is 
less significant and the fed-batch operation does not improve the process yield compared to 
a batch charge of methanol.  A molar ratio of 6:1 and a final temperature of 378 K allow a 
final yield of about 86% to be obtained in just hour, with also a significant improvement in 
the batch productivity.  
 
 Current work involves the improvement of our new experiment design procedure 
and the planning of some new experiments in order to investigate the mixing effect and, as 
mentioned above, check the model predictions. 

 
 

REFERENCES 

AIChE 2004, DIPPR: Data compilation of pure compound properties, Design Institute for Physical Properties. 



Asprey, S. P. 1999, Parameter estimation and optimal experimental design in multi-response non-linear 
dynamic situations: a progress report., Imperial College London. 

Asprey, S. P. & Macchietto, S. 2000, "Statistical tools for optimal dynamic model building", Computers & 
Chemical Engineering, vol. 24, no. 2-7, pp. 1261-1267. 

Asprey, S. P. & Macchietto, S. 2002, "Designing robust optimal dynamic experiments", Journal of Process 
Control, vol. 12, no. 4, pp. 545-556. 

Asprey, S. P. & Naka, Y. 1999, "Mathematical problems in fitting kinetic models - Some new perspectives", 
Journal of Chemical Engineering of Japan, vol. 32, no. 3, pp. 328-337. 

Bauer, I., Bock, G., Körkel, S. & Schlöder, J. P. 2000, "Numerical methods for optimum experimental design in 
DAE systems", Journal of Computational and Applied Mathematics, vol. 120, no. 1-2, pp. 1-25. 

Espie, D. M. 1986, The use of nonlinear parameter estimation for dynamic chemical reactor modelling, PhD 
Thesis, University of London. 

Espie, D. M. & Macchietto, S. 1988, "Nonlinear Transformations for Parameter-Estimation", Industrial & 
Engineering Chemistry Research, vol. 27, no. 11, pp. 2175-2179. 

Franceschini, G. 2003, Biodiesel da transesterificazione di olio vegetale: modellazione matematica ed analisi 
numerica del processo, Tesi di laurea, University of Padua, Italy. 

Franceschini, G., Bertucco, A. & Macchietto, S. "Simulation and optimisation of a biodiesel production 
process",  Proceedings of the Convegno GRICU 2004: Nuove Frontiere di Applicazione delle Metodologie 
dell'Ingegneria Chimica, Porto d'Ischia (Napoli), Italy 12-15 September,  pp. 667-670. 

Franceschini, G. & Macchietto, S. 2005, “A numerical experiment design study on a biodiesel production 
process”, Proceedings of the 2005 European Symposium on Computer Aided Chemical Engineering-15 
(ESCAPE-15), Barcelona, Spain 29 May-1 June, pp. 349-354. 

Infochem Computer 2004, Multiflash v.3.0, Multiflash Command Reference, Infochem Computer services Ltd., 
London. 

Körkel, S., Kostina, E., Bock, H. G. & Schlöder, J. P. 2004, "Numerical methods for optimal control problems 
in design of robust optimal experiments for nonlinear dynamic processes", Optimization Methods and 
Software, vol. 19, no. 3-4, pp. 327-338. 

Lemieuvre, M. 2002, Biodiesel process study: experiments and simulations, MSc Thesis, Imperial College, 
London. 

Noureddini, H. & Zhu, D. 1997, "Kinetics of Transesterification of Soybean Oil", Journal of the American Oil 
Chemist's society (JAOCS), vol. 74, pp. 1457-1463. 

Process System Enterprise 2004a, gPROMS v.2.3.0, Experiment Design for Parameter Precision in 
gPROMS, Process System Enterprise Ltd, London. 

Process System Enterprise 2004b, gPROMS v.2.3.0, Introductory and Advanced User Guide, Process 
System Enterprise Ltd, London. 

Versyck, K. J., Claes, J. E. & Van Impe, J. F. 1998, "Optimal experimental design for practical identification of 
unstructured growth models", Mathematics and Computers in Simulation, vol. 46, no. 5-6, pp. 621-629. 

Versyck, K. J. & Van Impe, J. F.  1998, "Trade-offs in design of fed-batch experiments for optimal estimation 
of biokinetic parameters", Proceedings of the 1998 IEEE International Conference on Control applications, 
Trieste, Italy 1- 4 September, pp. 51-55. 

Versyck, K. J., Claes, J. E. & Van Impe, J. F. 1997, "Practical identification of unstructured growth kinetics by 
application of optimal experimental design", Biotechnology Progress, vol. 13, no. 5, pp. 524-531. 



Walter, E. & Pronzato, L. 1990, "Qualitative and Quantitative Experiment Design for Phenomenological 
Models - A Survey", Automatica, vol. 26, no. 2, pp. 195-213. 

Zullo, L. 1991, Computer aided design of experiments. An engineering approach, PhD Thesis, University of 
London. 
 
 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



