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The study of distributed parameter systems has been a subject of considerable interest in process control 
research as evidenced by the large and growing number of research studies dealing with various aspects 
of the analysis and control of distributed process systems (e.g., see [1], [2], [4], [5], [9]). The motivation 
for these studies stems in part from the distributed nature of the control problem arising in many 
prominent chemical processes, such as transport-reaction systems. The fusion of analytical and 
computational tools from several domains, such as the dynamics of infinite-dimensional systems, model 
reduction and control, has enabled researchers to address a variety of control problems for distributed 
processes. This significant progress notwithstanding, an observation common to most of the existing 
work on control of distributed systems is the fact that the control problem is often formulated and solved 
within the classical feedback control setting where the output of the process is assumed to be passed 
directly to the controller, which generates the control input and in turn passes it directly back to the 
process. 

In practice, however, this paradigm often needs to be re-examined, in part because the interface between 
the controller and the process features some additional information-processing devices that should be 
accounted for in the design of the controller as well as in the analysis of its stability and performance 
properties. One important aspect to take into account in such situations is signal quantization. Generally 
speaking, quantization refers to the phenomenon of converting a real-valued signal into a piecewise 
constant one taking on a finite set of values. Quantization effects are common in most practical control 
systems and are usually tied to inherent physical or technological constraints on the sensing and 
actuating devices. For example, many signals cannot be measured quantitatively such as the biomass 
concentration in bio-reactors, substance concentrations in the liquid or the gaseous phase, the 
temperature in cement kilns or blast furnaces. Even the pH-sensors that are often used in the process 
industry have substantial measurement errors and give, in principle, only an interval of possible current 
pH values. These limitations give rise to quantized sensors whose measurements provide only a limited 
(i.e., discrete) information on the state of the system. Quantization can also affect the control input as 
many inputs can only be switched between discrete values rather than be varied continuously. Examples 
include on/off valves, pumps with discrete settings, stepping motors and a variety of other event-driven 
actuators. In addition to actuator and sensor discrete settings and device limitations, communication 
constraints are another important source of quantization. With the advent of networked control systems 
and emerging applications involving large numbers of distributed sensors and actuators, the example of 
digitally interconnected systems controlled through finite communication channels capable of 
transmitting only discrete information between the plant and the controller is becoming commonplace. 
In such systems, limits on the information (bit) rate requires that the measured output be quantized 
before being sent through the channel. 

Over the past two decades, the problem of dynamic systems analysis and control synthesis in the 
presence of quantization has received considerable attention. In the earlier control literature, 
quantization of inputs has been mostly regarded as a disturbance to be rejected (e.g., [3]). Typical results 
in this spirit are those showing that, with a finite quantized control set, stability can only be achieved in 
a weak sense (e.g., practical stability [7]) and that stability bounds can be made arbitrarily small by 
refining quantization sufficiently. More recently, some attention has been focused on quantized control 
systems as specific models of hierarchically organized systems with interaction between continuous 
dynamics and logic (e.g., [6], [8]). In these works, quantization is regarded as a fundamental 
characteristic of systems where the resources for implementing the control scheme are limited. The focal 
point of this research has been to understand how to quantize the control system best (in some suitable 
sense) to meet a pre-specified control objective, rather than assessing the robustness of a given design 



with respect to quantization. In [6], for example, the optimal (coarsest) quantization for asymptotically 
stabilizing a linear system was derived. Also, in [8] a hybrid quantized feedback control strategy that 
varies the quantization levels at certain times was devised to achieve asymptotic stability. 

In many practical settings, however, quantization levels are fixed by the quality and precision of the 
actuating and sensing devices used, as well as by the bandwidth of the communication medium, and 
cannot be varied. In these instances, an important problem is to analyze the robustness of a given 
controller to the errors introduced through quantization. This kind of analysis is helpful because it allows 
the designer to identify the performance limits of a given controller and to decide a priori whether a 
desired control objective can be achieved with a certain kind of actuator or sensor. Examination of the 
literature on quantized control systems also reveals that the available results have focused exclusively on 
lumped systems modeled by linear or nonlinear ordinary differential equations. There are many 
examples in the process industries, however, where the process dynamics are characterized by spatial 
variations owing to the underlying physical phenomena, such as diffusion, convection, and phase-
dispersion. Unlike lumped processes, the quantization problem for spatially-distributed control systems 
not only impacts the performance and stability of the controller but also imposes limitations on where 
the control actuators and measurement sensors should be placed to attain the desired control objectives. 
The abundance of spatially-distributed systems in process control applications as well as the frequent 
presence of quantization effects provide a strong motivation for (1) the analysis of the fundamental 
limitations imposed by quantization on the performance and stability of a distributed control system and 
(2) the development of systematic control strategies that account explicitly for quantization effects. 

Motivated by the above considerations, we focus in this work on the analysis and control of distributed 
processes, modeled by highly dissipative PDE systems, with both control and communication 
constraints. Control constraints are modeled using bounds on the magnitude of the control action, while 
communication constraints (between the plant and the control system) are represented using fixed 
actuator/sensor quantization levels. Using appropriate finite-dimensional approximations of the PDE 
system, we first characterize the inherent conflict that emerges in the control design objectives when 
both control and quantization constraints are considered, and the implications of this conflict for the 
actuator/sensor placement problem. At the heart of this conflict is the fact that control constraints limit 
the set of initial conditions starting from where stability can be achieved (stability region), while 
quantization constrains the set of terminal states that the system can be steered to (terminal region). 
Owing to the dependence of the input and measurement operators on spatial location, the conflict 
manifests itself through the dependence of both the stability and terminal sets on the spatial locations of 
the actuators and sensors. Using Lyapunov-based analysis and controller synthesis techniques, we obtain 
explicit characterizations of both the stability and terminal regions in terms of the control constraints, the 
quantization levels and the actuator/sensor locations. The analysis reveals the essence of the tradeoff, 
which is captured by the fact that the control configuration with the largest stability region also possess 
the largest terminal region. Stabilization from large initial conditions favors configurations with large 
stability regions, while close convergence to the steady-state favors configurations with small terminal 
sets. Therefore, steering the closed-loop state from large initial conditions to arbitrarily small 
neighborhoods of the desired steady-state cannot be achieved using a single control configuration (with 
a fixed actuator/sensor placement) and requires switching between multiple configurations. To resolve 
this conflict, we devise an actuator/sensor scheduling strategy that orchestrates the transitions between 
the different locations based on where the closed-loop state is with respect to the stability and terminal 
regions at any given time. We also characterize the minimum number of transitions needed to steer the 
closed-loop trajectory from a given initial condition to a given terminal set. Finally, the theoretical 
results are demonstrated using a benchmark diffusion-reaction process example. 
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