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Traditionally, system level optimization is performed on a macroscopic continuum level description of 
the physical system that presumes the accuracy of closed-form equations. However, for micro/nano 
applications and other systems where exact constitutive relations are unknown or do not provide a good 
representation of the system's behavior, a microscopic or molecular level description can be used as a 
realistic representation of the system physics. Furthermore, even though system analysis is usually 
performed at the macroscopic level, recently researchers (Makeev et al., 2002) have shown that the 
details of the model description can have a profound effect on these analyses. Since closed-form 
equations are unavailable for modeling and optimization at a fine resolution, coarse time-steppers can 
instead be used. Coarse time-steppers estimate a discrete-time input-output mapping generated by 
closed-form equations (if they were available) using kinetic Monte Carlo simulations. Yet even though 
time-steppers provide a bridge between microscopic/stochastic simulations and computational 
optimization (Bindal et al., 2004, Kevrekidis et al, 2003), running microscopic simulations is 
computationally very expensive and therefore the use of standard optimization techniques can be 
prohibitive. Thus, there exists a need for the development of robust algorithms capable of economically 
optimizing these inherently noisy systems. Different approaches have been employed towards the 
optimization of noisy functions (Kelley, 1999). Global zero-order optimization methods such as genetic 
and evolutionary algorithms (Storn et al, 1995) can provide optimal solutions. Local zero-order methods 
utilizing function evaluations on sequences of simplices (Nelder-Mead, multilevel search, and implicit 
filtering) yield optima with reasonable accuracy (Choi & Kelley, 2000, Huyer and Neumaier, 1999). 
Although convergence bounds can be established with rigorous higher-order methods, their main 
disadvantage is that they can become trapped in artificial local optima introduced due to the presence of 
noise. An approach that is proposed to overcome this problem is optimisation of response surface 
models (Myers & Montgomery, 2002). In this approach, the stochastic function is approximated by a 
low-order polynomial using the input-output response mapping, which is then used for optimization, 
most commonly by steepest descent. The use of steepest descent in order to accelerate convergence 
performs wells when in the neighborhood of the optimum, but far away from it, slow movement may not 
justify the computational overhead in building the response surfaces. Although much of the work has 
focused on improving local optimization of response surfaces, global methods have also been studied 
(Jones, 2001, Zilinskas, 1991). Let a stochastic system consisting of N particles at the microscopic level 
describe the set of macroscopic properties x. Considering the optimization of an objective function 
g(x,N), if the error in the function evaluation is assumed to be independent of x, then this function can be 
described as g(x,N) = f(x) + σ(N), where σ(N) is the stochastic error associated with the size of the 
microscale model. The variance of the stochastic error at any system size N can be given as σ2(N) = 
Var({gi(x,N)}|i = 1…k) for k microscale simulations around the same initial condition. As N increases, 
the variance decreases. The goal is to obtain g(x,N) to within acceptable accuracy while at the same time 
minimizing the computational effort in order to perform system-level optimization. In this work we 
employ three iterative methods for the optimization of noisy functions arising from the description of 
systems at microscopic level. The first method determines an optimal difference interval with which to 
compute numerical gradients in order to formulate the optimization problem, which is then solved using 
nonlinear programming (NLP) solvers. An improvement of this approach is also studied whereby the 
level of microscopic detail is gradually increased upon approaching the optimum, reducing the 
computational cost. The second method moves towards the optimum region by selecting the best 
optimum among iterative simplices. Once this area is identified, refinement of the optimum occurs via 
movement by steepest descent of response surfaces. In the third technique, the response surface 
functionality is used within SQP to overcome the limitation of initial fixed local movement of the 
second approach. A potential new iterate is the optimum of the local function extrapolated over the 
entire feasible domain. Movement to this point occurs only when this vector is proven to provide 



improvement in the objective function over the current candidate solutions. A five-species reaction 
system is selected in order to investigate the effectiveness of the proposed optimization strategies. 
System information is obtained by making function calls on two input species. The objective function is 
given in terms of two non-input species at steady-state. The equivalent of a function call using closed-
form equations can be made using time-steppers whereby input species concentrations are first specified 
at a macroscopic level and “lifted” to a microscopic level. Using Monte Carlo simulations, the system 
evolves to steady-state after a long time horizon. The steady-state solution vectors are then “restricted” 
back to macroscopic level concentrations, after which the objective function can be evaluated. The 
deterministic solution of the system yields both a local and a global optimum. It is shown that all 
proposed strategies successfully attain one of the optima. In the algorithm utilizing optimal difference 
intervals to formulate and solve the NLP, 50% computational savings is obtained when the level of 
system detail is gradually increased to finer resolution as the optimum is neared, over that of when the 
system size remains fixed throughout. However, the solution error increases from 0.04% to 0.2%. 
Optimization of response surfaces using either simplicial/steepest descent or SQP achieves an error of 
0.1% - 1%. The Simplex/Steepest Descent method requires on average 30% fewer function calls than 
the SQP-based RSM optimization algorithm because the initial design for each iteration in the latter 
method requires more sample points. The simplex design for the former method not only uses fewer 
points in each iteration, but because the size of the local region also remains unchanged from one 
iteration to the next, any common points from earlier iterations do not need to be recalculated. The 
comparable performance of the SQP-based algorithm to that of the remaining methods in determining 
the optimum indicates the competitiveness of this strategy. For the case study, the distance that a random 
starting point needs to cover to converge to either the local or global optimum turns out to be roughly 
the same. For other functions in which a global optimum exists near the limits of the design region, the 
SQP-based algorithm is expected to provide faster convergence to the optimum in contrast to the 
simplex/steepest descent method as the ability to move in a better derivative-based overall direction will 
quickly overcome the slower movement of sequential simplices. Our existing work focuses on the use of 
SQP to optimize non-interpolating response surfaces based on a minimum number of sample points. 
Compared to the computational effort needed for the method utilizing an optimal difference interval and 
to earlier results reported in Bindal et. al. (2004), the simplex/steepest descent algorithms are more 
efficient by two orders of magnitude. It is found that a tradeoff exists between the quality of the solution 
and the number of function calls required. Algorithmic efficiency in obtaining the optimum can be 
increased through parallelization of computations by assigning one microscopic simulation to each CPU. 
The next step is to continue integrating these methodologies in order to develop more efficient local 
optimization approaches for noisy functions. This work is expected to serve as a cornerstone towards 
developing a global optimization framework for the same class of noisy functions. References [1] 
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