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ABSTRACT 

An efficient sampling technique based on a quasi-random sequence of points that perform 
significantly better than conventional Monte Carlo sampling is used to predict octanol-water 
partition coefficients. This technique is called Hammersley Sequence Sampling (HSS), which 
uses a low-discrepancy sequence of points with deterministic error bounds and 
multidimensional uniformity properties. The k-dimensional uniformity properties of HSS have 
been exploited in order to reduce the number of cycles required to reach equilibration and to 
obtain more accurate property predictions. Configurational-bias Gibbs ensemble technique 
was used to predict octanol-water partition coefficients from Gibbs free energies of transfer. 
Preliminary results using HSS and conventional Monte Carlo sampling (pseudo-random 
numbers) show that the system reaches equilibration faster, which was confirmed by plotting 
radial distribution functions. Furthermore, the Gibbs free energies of transfer predicted are 
closer to experimental data when HSS was used.  
   
1. INTRODUCTION 
 
 Octanol-water partition coefficient Kow is an important molecular parameter in estimating 
various environmental and toxicological properties of chemicals. This coefficient have been 
used in estimation of toxicity parameters such as LC50 (lethal concentration that will kill a 
statistical 50% of a test population) and LD50 (lethal dose that will kill a statistical 50% of a test 
population). It has also been found that the bio-concentration factor (BCF), describing the 
bioaccumulation of chemicals in an organism has a strong dependence on Kow. In addition, 
octanol-water partition coefficients provide a basis to a large amount of quantitative-structure 
activity relationships (QSARs), which have been used to correlate or predict solute properties 
in biophases (membranes, fat tissue, body fluids).  
 
 The octanol-water partition coefficient, Kow in thermodynamics is a free energy function 
which is directly related to the energetics of transfer between two phases. The successfulness 
of Kow in predicting bioaccumulation and toxicity have been attributed to the fact that the 
octanol-water partitioning is a good representative of a compound going from more aqueous 
like-phases (extracellular phase) to organic-like phases (cellular phase) inside the body, which 
is the rate controlling step during the interaction of a compound and a biological system 
(Hansch and Fajita, 1964).   
 
 Although, experimental data for Kow is available for more than 18000 chemicals 
(Sangster, 1997), this number is far from the total number of compounds for which data is 
desirable. Therefore, molecular modeling simulations have been carried out for this system by 
various researchers. DeBolt and Kollman (1995) investigated the structure, dynamics and 
solvation in 1-octanol and its water saturated solution by molecular dynamics and free energy 
perturbation studies. Using this method they have computed the relative partition coefficients 



and examined the structural aspects of interaction. Similarly, Best et al. (1999) studied the 
relative 1-octanol/water partition coefficients by a molecular dynamics/free energy perturbation 
study and compared their results to a generalized Born/surface area octanol continuum 
solvation model. More recently, Lyubartsev et al. (2001) studied the solubility of organic 
compounds in water/octanol systems by molecular dynamics simulations using an expanded 
ensemble technique for drug compounds. Moreover, studies were performed by Chen and 
Siepmann (2000) where a configurational-bias Monte Carlo (CBMC) simulation was carried out 
in the Gibbs ensemble to calculate the partitioning of alkane and alcohol solutes in 1-
octanol/water. The advantage of this latter work to free energy perturbation studies is that the 
Gibbs free energy of transfer can be determined directly from the ratio of solute number 
densities and the number density ratio can be determined very precisely from CBMC/GEMC 
simulations with small statistical errors.  
 
 The success of Monte Carlo and molecular dynamics methods depends on the efficient 
sampling of the configuration space, to generate states of low energy, enabling the calculation 
of properties accurately. In Monte Carlo simulations, particles are randomly selected and 
moved by a random extent and the energy change of the system is analyzed. For systems with 
large number of molecules, this task requires significant computational time. In this paper, in 
order to reduce the computational time and improve the efficiency of molecular simulations, we 
have used Hammersley Sequence Sampling (HSS) technique (Kalagnanam and Diwekar, 
1997). This sampling technique uses low-discrepancy sequences (quasi-random points) which 
have the better  uniformity or evenness in their domain of definition.  This sampling technique 
has been shown to require fewer samples and faster convergence properties in various 
applications such as off-line quality control of a CSTR (Kalagnanam and Diwekar, 1997), 
robust design of distillation columns (Diwekar and Kalagnanam, 1997), solvent selection (Kim 
and Diwekar, 2002), multi-objective optimal designs for emission reduction (Fu and Diwekar, 
2004) and optimal molecular design under uncertainty (Tayal and Diwekar, 2001). Tayal and 
Diwekar (2000) used 3D HSS samples for efficient evaluation of 3N-dimensional property 
integral in molecular simulations. Up to 75% computational savings in the equilibrium phase 
with an overall savings of 37.5% for a 100 Lennard-Jones particle molecular system was 
obtained.  
 
 In this paper, quasi-random points showing k-dimensional uniformity generated by the 
HSS technique are used instead of pseudo-random points for various Monte Carlo moves of 
the molecular simulation algorithm for the prediction of octanol-water partition coefficients, to 
obtain faster convergence and reduce the computational requirements.  A configurational-bias 
Monte Carlo method based on HSS is derived for Gibbs ensemble to improve the efficiency of 
molecular simulations to calculate Kow.  Using this technique we have significantly reduced the 
number of Monte Carlo cycles for accurate estimation of Gibbs free energies of transfer and 
improved the efficiency of equilibration.   
 
 This paper is divided into 6 parts. Sections 2 talks about the usefulness of octanol-water 
partition coefficient and various prediction methods for this important parameter. Section 3 
describes quasi-random numbers and the HSS technique. In Section 4, the application of this 
efficient sampling technique to molecular simulations for the prediction of Kow is detailed. In 
Section 5, we compare the results we have obtained from pseudo-random points and HSS 
samples and provide a discussion. In Section 6, summary and future work is presented.    
 



2. OCTANOL-WATER PARTITION COEFFICIENT  

2.1. Usefulness of the Octanol-Water Partition Coef ficient  

 
 Kow, in thermodynamics is a free energy function (like solubility and vapor pressure) and 
therefore it is directly related to the energetics of transfer between two phases. The connection 
of Kow with biological activity was suggested by Hansch and Fujita (1964), as shown in Figure 
1. This figure shows the interaction of a compound with a biological system. At first, the 
chemical compound arrives at a particular site in a cell from a dilute solution outside the cell 
following a random walk. Then the chemical compound goes through the relatively slow 
process of diffusion or permeation, which represents the partitioning of the compound between 
a polar aqueous phase and a non-polar organic phase. This partitioning is controlled by the 
molecular structure of the compound. Once the compound goes into the non-polar organic 
phase it goes through a series of chemical reactions eliciting a biological response. However, 
the rate-controlling step in this scheme is the first step, which is the partitioning of the 
compound between a lipophilic and hydrophilic phase and octanol-water partition coefficient is 
a good indicator of this step. Octanol has a structure, which is composed of a hydrophilic head 
and a lipophilic tail, which has been found to mimic the complexities of biological and other 
environments very well.  
 

These are the various applications of octanol-water partition coefficients in predicting 
biological and toxicological properties (Sangster, 1997): 

 
�  Estimation of bioconcentration factor: Kow is also an important molecular parameter for 

describing bioaccumulation of chemicals in the environment. Bioaccumulation is the 
process by which a chemical accumulates in an organism to a higher concentration, than is 
present in an external source. It has been found that bioconcentration factor (BCF) of a 
compound depends upon Kow.  

�   
�  Estimation of toxicity parameters LC50 and LD50: Many direct relationships have been 

reported between LC50 and octanol-water partition coefficients Kow for many compounds. 
For example a good linear relationship was reported between log LC50 values for fish and 
log Kow for organic compounds including chloro-alkanes, chloro-benzenes, alcohols and 
ethers.  

�   
�  Usefulness in quantitative structure-activity relationships: The quantitative structure-activity 

relationship (QSAR) relates numerical properties of the molecular structure to its activity by 
a mathematical model. Octanol-water partition coefficients provide a basis to a large 
amount of quantitative-structure activity relationships. QSARs have been used to correlate 
or predict solute properties such as pharmacokinetic characteristics of drug compounds in 
biophases (membranes, fat tissue, body fluids), and toxicity.  

 
 
  
    
 
 
 

Compund in 
extracellular 
phase 

Site of action in 
cellular phase Biological 

response 

Chemical reaction 

STEP I     STEP II …. STEP N 



Figure 1:  Simplified model for the interaction of a chemical compound and a biological system 
(Sangster, 1997) 
 
2.2. Prediction of Octanol-Water Partition Coeffici ents from Molecular Simulations  
  
 Calculations of relative octanol-water partition coefficients have been reported using 
free energy perturbation method with the molecular dynamics and Monte Carlo simulation 
methods. The computational strategy is as follows (Jorgensen et al., 1990, Best et al., 1999): 
  
 If one considers the thermodynamic cycle below for two solutes A and B: 

 
    

�
GTrA = -2.3 RT log Pow(A)      (1) 

    
�

GTrB = -2.3 RT log Pow(B)      (2) 
  
 In equations 1 and 2, the logarithm of the octanol-water partition coefficient for solutes A 
and B is presented in terms of free energies of transfer. The difference between the solvation 
free energies is the free energy of transfer 

�
GTrA for transferring solute A from water to water-

saturated octanol. From the thermodynamic cycle, we can obtain Equation 3, since we know 
the fact that free energy is a state function.  
  
   

�
GTrB – 

�
GTrA = 

�
GoctAB – 

�
GaqAB = 

� �
GTrAB   (3) 

    
� �

GTrAB = -2.3RT
�

log Pow     (4) 
 
 Since it is difficult to calculate absolute free energies of solvation, a relative free energy 
of solvation is computed in which solute A is slowly mutated to solute B. Equation 4 allows the 
calculation of the relative partition coefficient (

�
log Pow) for solutes A and B to be calculated 

from the direct relationship between the relative free energy of transfer 
� �

GTrAB and 
�

log Pow.  
  
 Using the above mentioned methodology and free energy perturbation methods (FEP), 
molecular dynamics simulations were performed to calculate the relative octanol-water 
partition coefficients (Best et al. 1999).  
  
 Recently, Lyubartsev et al. (2001) have used the expanded ensemble method, which 
provides a realistic way of modeling the two phase system at specific physical conditions, 
within the framework of molecular dynamics simulations to compute octanol-water partition 
coefficients. The expanded ensemble method can both be used with a Monte Carlo (molecular 
simulations) and molecular dynamics framework. Using this method, not only the relative 
partition coefficients but also absolute values for the partition coefficients can be obtained.   
  



 Another methodology that was used to calculate octanol-water partition coefficients is 
the configurational-bias Monte Carlo (CBMC) simulations in the Gibbs ensemble (Chen and 
Siepmann, 2000). The Gibbs ensemble is very suitable for this simulation because it creates a 
setup analogous to the experimental situation. Gibbs ensemble Monte Carlo simulation 
(GEMC) utilizes two separate simulation boxes, which are in thermodynamic contact, but do 
not have an explicit interface. As a result, for a given state point the properties of the coexisting 
phases such as the mutual solubilities of the two solvents and the partitioning of solute 
molecules can be determined directly from a single simulation. 
  
 The main advantages of CBMC/GEMC simulations over free-energy perturbation (FEP) 
are: 
�  In both the experiment and CBMC/GEMC simulations Gibbs free energy of transfer is 

directly determined from the ratio of solute number densities in the two phases (partition 
constant), while the difference in excess chemical potentials is used in FEP calculations. 

�  Number density ratio is a mechanical property that can be determined very precisely 
leading to small statistical errors in 

�
G.  

�  The composition of the two solvent phases do not need to be specified in advance, 
whereas FEP simulations are performed at a fixed composition that might not correspond 
to a proper thermodynamic state for the force field used in the calculations.  

  
 In this paper, we use this latter methodology for predicting octanol/water partition 
coefficients (Kow) from Gibbs free energies of transfer. Our aim is to enhance the efficiency of 
predicting Kow from molecular simulations by introducing an efficient sampling technique based 
on quasi-random points. The next section talks about this sampling technique.  
 
3. AN EFFICIENT SAMPLING TECHNIQUE: HAMMERSLEY SEQU ENCE SAMPLING 
 
 Normal Monte Carlo methods use pseudo random numbers in their calculations.  
Pseudo random sequences are intended for general use on all classes of problem.  However, 
in quasi-Monte Carlo methods, the basic idea is to use sequences in which a particular 
statistical property is enhanced without showing significant departure from randomness.   
Neiderreiter(1992) has presented an extensive review of the quasi-Monte Carlo methods. 
These methods construct a sequence of points that perform significantly better than Monte 
Carlo methods with deterministic error bounds.  
 
 In this paper, an efficient sampling technique (Hammersley Sequence Sampling) based 
on Hammersley points, which has been developed by Kalagnanam and Diwekar, (1997) is 
used. This sampling technique uses an optimal design scheme for placing the n points on a k-
dimensional hypercube, which ensures uniformity properties in multi-dimensions unlike 
pseudo-random number based Monte Carlo, Latin Hypercube (Iman and Shortencarier, 1984), 
and its variant, the Median Latin Hypercube (Saliby, 1990) sampling techniques.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 This can be illustrated by a simple experiment. If we place sample points on a unit 
square using a pseudo random number generator, and Hammersley points we can observe 
the uniformity properties of HSS. This is illustrated in Figure 2. If the first variable of 
Hammersley sequence is not taken into account, we obtain a Halton sequence (1960).    
  
 Due to its multidimensional uniformity properties, the HSS technique requires fewer 
samples and has a faster convergence rate varying from 3 to 100 according to the tests 
performed by Kalagnanam and Diwekar(1997). Next, we will see the effects of this technique 
on molecular simulations.      
 
4. APPLICATION OF HSS TO MOLECULAR SIMULATIONS 

4.1. Results for 100 particle Lennard-Jones system  
 
 Tayal and Diwekar(2000) has presented the effect of k-dimensional uniformity 
properties of HSS samples in efficient sampling of the 3N-dimensional  phase space in a 
Monte Carlo molecular simulations algorithm. The equation of state for a 100 and 1000 particle 
Lennard Jones system was predicted using the NVT ensemble. The HSS samples have 
increased the efficiency of the MC algorithm, reaching equilibration faster. This was confirmed 
by comparing the radial distribution function plots of HSS approach and conventional Monte 
Carlo algorithm. An example of these plots is shown in Figure 4.  
 
 In this figure it can be seen that, with the HSS approach equilibration is reached in 50 
cycles, whereas with the conventional MC algorithm using pseudo random numbers, 
equilibration takes more number of cycles. Tayal and Diwekar(2000) have concluded that for a 
100 particle system, the computational savings observed are about 75% during the 
equilibration phase of the algorithm.  
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Figure 2: 100 sample points on a unit square using (a) subtract-and-borrow pseudo-random 
number generator (Marsaglia et al., 1990), (b) Hammersley points 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
  
 In Figure 3, the equation of state comparisons for 100 particle system are presented 
and these are compared to the benchmark results obtained by Johnson et al.(1993). The 
results obtained using HSS show significant improvement and appear to converge much 
faster.  
  
 In the light of these promising results for a Lennard-Jones 100 particle system, the 
effect of HSS samples in increasing the efficiency of predicting octanol-water partition 
coefficients are presented in this work. For this purpose an algorithm similar to what has been 
proposed by Chen and Siepmann (2000) was used, as discussed in Section 2. This algorithm 
has been implemented using the Towhee Monte Carlo molecular simulations program 
(http://towhee.sourceforge.net). The flowchart of this algorithm is given in Figure 5.  
  
 As can be seen from the figure, the octanol-water partition coefficients are predicted by 
a configurational bias, Gibbs ensemble technique, where five types of Monte Carlo moves are 
performed. These moves are carried out for between 100-8000 Monte Carlo cycles, where in 
one cycle the number of moves performed is equal to the number of molecules (N) in the 
system. These moves are performed in certain proportions. For example, the volume moves 
are equal to 0.2% of all the MC moves. 24.8% of these moves are swapmoves and each of 
configurational bias regrowth moves, rotational moves and translational moves are performed 
25% of the time. Each of these moves  require random numbers.  In order to keep the k-
dimensional uniformity of HSS points, we have used different random number generation for 
each move. 
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Figure 3 : Equation of state predictions - Monte Carlo Sampling approach vs. the HSS approach 
to MC simulations (Tayal and Diwekar, 2000) 
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Figure 4: g(r) plot for the (a) Conventional Monte Carlo Sampling and (b) HSS approach at the 
initialization of the Equilibration and Production Phase (varying MCS (Nequil)) (Tayal and Diwekar, 2000) 



   
The number of random numbers required for each move is given below: 
�  VOLNPT (Volume moves): this part performs a volume change move on a single box and 

the move is accepted based on the energy change, number density, and the specified 
external pressure. 

 3 random numbers are needed for this move: 
 Select a box at random to change the volume for the box (1 RANDOM NUMBER) 
 Calculate new volume:         (1 RANDOM NUMBER) 
 Acceptance criteria (1 RANDOM NUMBER) 
 
�  SWAPMOVES (Swap moves): this part performs a 2-box configurational-bias molecule 

transfer  
 4+3 random numbers are needed for this move: 
 Choose a pair of boxes according to the probabilities (1 RANDOM NUMBER) 
 Select the primary molecule type (1 RANDOM NUMBER) 
 Select one choice at random with a bias toward favorable energies. (1 RANDOM 
 NUMBER) 
 Acceptance criteria (1 RANDOM NUMBER) 
 Select a position for the center of mass uniformly from the entire insertion box – call 
 UNIFORMBOX (3 RANDOM NUMBERS)  
 
�  CBREGROW (Configurational-bias regrowth moves): this part performs a configurational-

bias molecule regrowth move.  
 3 random numbers are needed for this move: 
 Select a molecule type at random (1 RANDOM NUMBER) 
 Select a proper box (1 RANDOM NUMBER) 
 Acceptance criteria (1 RANDOM NUMBER) 

 
�  ROTATE (Rotational moves): this part attempts to rotate a molecule about an axis that is 

parallel to either the x, y or z axes, and runs through the center of mass of the molecule.  
      6 random numbers are needed for this part: 
  Select a molecule type at random (1 RANDOM NUMBER) 

 Select a proper box (1 RANDOM NUMBER) 
 Choose a random angular displacement over the 3 axes (3 RANDOM NUMBERS 
 NEEDED) 
 Acceptance criteria (1 RANDOM NUMBER) 

 
�  TRANCOM (Translational moves): this part attempts to move an entire molecule in the x, y, 

or z direction. The move is accepted based upon the energy change. 
 3+2 random numbers are needed for this part.  

 Select a molecule type at random (1 RANDOM NUMBER) 
 Select a proper box (1 RANDOM NUMBER) 

 Calculate a random vector on the unit sphere – call SPHERE (2 RANDOM NUMBERS)   
 Acceptance criteria (1 RANDOM NUMBER) 
 

 It has been found in an earlier work from our group related to simulated annealing (Kim 
and Diwekar, 2002) that it is important to differentiate where the k-dimensional uniformity is 
important. Therefore, in our case study, only some of the random numbers was replaced by 



HSS samples, which are summarized in Table I. In this work, a Halton sequence was used, 
where the first variable of the Hammersley sequence was not taken into account, when 
replacing the random samples. 

  
Table I: The summary of random numbers replaced by HSS samples 

MOVE RANDOM NUMBERS REPLACED  NAME  
VOLNPT Select a box at random to change the volume for the box  

( 1 RANDOM NUMBER) 
HSS1 

SWAPMOVES Select the primary molecule type (1 RANDOM NUMBER) HSS1 

CBREGROW Select the molecule type (1 RANDOM NUMBER) HSS2 

ROTATE Select the molecule type (1 RANDOM NUMBER) 
Choose a random angular displacement over the 3 axes 
(3 RANDOM NUMBERS) 

HSS3 
HSS1,HSS2,HSS3 

TRANCOM Select the molecule type (1 RANDOM NUMBER) HSS4 

SPHERE(called 
by TRANCOM) 

Calculate a random vector on the unit sphere  
(2 RANDOM NUMBERS) 

HSS1,HSS2 

 
 From Table I, it can be seen that choosing an angular displacement over 3 axes (3-
dimensional move), requires 3 random numbers and for this purpose we replaced the Monte 
Carlo samples with 3D HSS samples in this subroutine. Similarly, for  sphere to exploit the 
multidimensional uniformity properties of HSS, we have replaced the 2 random numbers 
required to calculate a random vector on a unit sphere with 2D HSS samples. Furthermore, in 
all of the moves except VOLNPT, a molecule type is chosen to perform the selected Monte 
Carlo move. Therefore, in moves SWAPMOVES, CBREGROW, ROTATE AND TRANCOM, 
we replaced the four random numbers with four HSS samples. 
 The HSS samples were generated a priori and replaced by random samples during the 
simulation. The preliminary results from these simulations are given in the next section. 
 
5. PRELIMINARY  RESULTS & DISCUSSION 
 
 The Gibbs free energies of transfer and the partitioning of alcohol solutes between 
water and pure octanol were computed from number densities using molecular simulations. 
The Towhee Monte Carlo molecular simulations program was used for this purpose. The 
TIP4P and OPLS united atom force fields were used to describe the interactions of water and 
alcohols respectively (Jorgensen et al. (1984); Jorgensen et al. (1983);, Jorgensen (1986); 
Jorgensen and Tirado-Rives (1988)). Simulations were carried out at the isobaric ensemble 
where the temperature T=298 K and pressure p=101.3 kPa. Two different two-phase systems 
were considered. One of them was helium/(dry)1-octanol and the other one helium/water 
system.  
  
 In Table II and Table III, the initial results for the calculated 

�
G values are presented 

and the values found using the HSS approach and conventional Monte Carlo simulations 
(where pseudo random numbers are used) are shown respectively for the water phase 
(helium/water system) and octanol phase (helium/(dry)1-octanol). For both of these systems, 
the results found using the HSS approach are closer to the experimental data. For the water 
phase, the calculated values of 

�
G with the HSS method after 8000 cycles, the error is even 

smaller than the values calculated after 10000 cycles using the conventional Monte Carlo 
random sampling approach.  Note that the results reported in Table II are for a 1510 particle 



system (this system is composed of helium (600), methane (20), ethane (20), propane(1), n-
butane(1), methanol(1), ethanol(1), propanol(1), n-butanol(1), water(864)).  In Table III, the 
results are reported for a 165 particle system (this system is composed of helium(100), 
methanol(1), ethanol(1), propanol (1), n-butanol(1), 1-octanol(60)) 
    
Table II. Gibbs free energies of transfer (in kJ/mol) for 1510 particle two-phase system of 
helium/water at T=298 K and p=101.3 kPa.  
   

METHOD Number of 
cycles  

�
G/w 

methanol  

�
G/w 

ethanol  

�
G/w 

propanol  

�
G/w 

butanol  
HSS approach  8000 -16.19 -15.10 -18.13 -15.85 

Monte Carlo –random  8000 -15.13 -13.32 -17.36 -12.55 
Monte Carlo – random  10000 -15.74 -13.92 -17.97 -13.16 

experimental data   -21.19 -20.95 -20.36 -19.86 

 
Table III. Gibbs free energies of transfer (in kJ/mol) for 164 particle two-phase system of 
helium/1-octanol at T=298 K and p=101.3 kPa.  
  

METHOD Number of 
cycles  

�
G/o 

methanol  

�
G/o 

ethanol  

�
G/o 

propanol  

�
G/o 

butanol  
HSS approach  3000 -16.18 -16.95 -13.32 -16.74 

Monte Carlo –random  3000 -20.36 -24.04 -23.30 -30.17 

experimental data   -16.17 -18.22 -20.98 -23.88 

 
 In Figure 6, the radial distribution function plots are presented for the helium/1-octanol 
system obtained as a result of using the HSS approach and conventional Monte Carlo 
sampling using pseudo-random numbers. The simulations were carried out for 10000 cycles 
and the radial distribution function plots at the end of 1000, 3000 and 10000 cycles are 
illustrated in this figure. It can be seen clearly that the when we use the HSS approach the 
system reaches equilibration much faster. This can be observed from the shape of the radial 
distribution function plots and their closeness to the ideal case where g(r)=1.  
  
 The accuracy of the predictions for Gibbs free energies of transfer can further be 
increased by increasing the number of cycles during the production phase.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5:  Flowchart of the algorithm for predicting octanol-water partition coefficients

MAINLOOP: 
Performs a Monte Carlo simulation for nstep MC 
cycles. A cycle is equal to N Monte Carlo moves 
where N is the number of molecules in the system  

The main loop generates a random number r 
from a uniform distribution [0,1] 

 

If 0<r<0.002, then 
VOLNPT 

This subroutine 
performs a volume 

move on a single box 
and the move is 

accepted based on the 
energy change, 

number density and 
specified external 

pressure. 
 

If 0.02<r<0.25 
SWAPMOVES 
This subroutine 

performs all of the 
molecule swap 
moves. This 

includes 2-box 
configurational-bias 
molecule transfer. 

If 0.25<r<0.5 
CBREGROW 

This subroutine 
performs a 

configurational-bias 
molecule regrowth 

move. 

If 0.5<r<0.75 
TRANCOM 

This subroutine 
attempts to move an 
entire molecule in 

the x, y, or z 
direction. The move 

is accepted based 
upon the energy 

change. 

If 0.75<r<1.0 
ROTATE 

This subroutine 
attempts to rotate a 

molecule about an axis 
that is parallel to either 
the x, y or z axes, and 
runs through the center 

of mass of the 
molecule. 

SPHERE: Calculates a 
random vector on the 
unit sphere (2 RN) 

UNIFORMBOX: Select a 
position for the center of 
mass uniformly from the 
entire insertion box 



 
6. SUMMARY AND FUTURE WORK 
 
 Octanol-water partition coefficient (Kow) is a useful parameter for predicting ecological 
toxicity (LC50 and LD50), bioaccumulation of chemicals inside the body (bioconcentration factor) 
and provides a basis for QSAR models, which relate the molecular structure of chemicals to 
their biological activity by a mathematical model.  
 
 In this work, the effect of an efficient sampling technique to increase the efficiency of 
predicting Kow from Gibbs free energies of transfer by molecular simulations was explored. For 
this purpose, the random samples at certain points of the simulation program were replaced 
with samples showing k-dimensional uniformity properties. This sampling technique, called 
Hammersley Sequence Sampling (HSS) is a technique showing faster convergence properties 
than conventional Monte Carlo sampling.  
   
 The preliminary results obtained with conventional random sampling (MCS) and HSS 
show that with HSS, predictions for Kow are closer to experimental data and the system 
reaches equilibration much faster. This was confirmed by radial distribution function plots. As a 
future work, we are planning to confirm our results with more simulations for the 1-octanol and 
water phases. 
 
 
 



Figure 6:  The radial distribution functions(rdf) between two molecules for the 164 particle system of helium/pure 1-octanol. (a) rdf after 
10000 cycles with Monte Carlo – random sampling, (b) rdf after 3000 cycles with Monte Carlo – random sampling, (c) rdf after 1000 
cycles with Monte Carlo – random sampling, (d) rdf after 10000 cycles with HSS, (e) rdf after 3000 cycles with HSS, (f) rdf after 1000 
cycles with HSS 
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