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Abstract

A general framework for modeling and analyzing systems with
wireless devices is proposed. This framework is used to derive
an optimal state estimator when the network introduces ran-
dom communication delays and packet losses. The framework
is general and allows us to analyze earlier results derived in
the context of state estimation with delayed and missing ob-
servations.

1. INTRODUCTION

Applications such as coordinated control of autonomous ve-
hicles (UAV formations, etc.) and monitoring of plants spread
over large areas, involve data transfer over wireless commu-
nication links. When compared with wired devices, wireless
devices have a number of advantages, such as mobility, flexi-
bility in installation and maintenance, and in many situations,
their use is unavoidable. However, constraints inherent to this
technology, lead to undesirable effects such as latency and
packet losses [1, 2, 3]. To minimize controller performance
degradation due to these effects, it is necessary to focus on
robustness of control applications in the presence of random
delays and missing data.

State estimation is an important component in many model-
based, multivariable control techniques and has a direct im-
pact on closed-loop performance. Optimal state estimation
techniques are used in a number of signal processing and con-
trol applications. The Kalman filter is an optimal, recursive,
linear estimator, which estimates the state of a linear system,
by weighting the measurements according to a priori infor-
mation about their accuracies [4, 5]. Its properties, and theo-
retical implications of its extension to several other problems
have been widely studied. While, the Kalman Filter was orig-
inally developed to deal only with regularly sampled data, it
was extended to handle missing data, motivated by multirate
applications [6, 7].

State estimation techniques in systems which use wireless
devices, were studied to establish statistical convergence prop-
erties of the error covariance matrix. Analysis of packet loss

effects, led to the establishment of a critical arrival rate of ob-
servations, and bounds on the expected state error covariance
[2, 3, 8]. Additionally, Smith et. al. [9] used the Jump Markov
Linear Systems (JMLS) framework to study these packet loss
effects.

In the context of state estimation in wireless systems, we
can consider two problems to solve, depending on whether
the state sequence of the discrete system is known or not. We
use the term implementation problem, to refer to state estima-
tion for an existing system and solve this problem under the
assumption that the discrete system state sequence is known.
On the other hand, in a case where interest lies in studying the
effect of loss and delay probabilities, the state sequence may
not be known a-priori. We term this problem as the design
problem. Work on the design problem is reported in [10].

In this report, we propose a stochastic hybrid system frame-
work for analyzing systems which have wireless components.
The generality of the framework, allows us to analyze existing
results in this area, which were derived under various simpli-
fying assumptions. The rest of the paper is as follows. In
Section 2, we present the model structures assumed for the
plant and the network. Following this, in Section 3, we de-
scribe derivation of optimal state estimator with innovation
approach. In Section 4, we derive the recursive estimators for
the missing observation and the one-sample delay cases re-
spectively. Finally, we present a numerical example to demon-
strate the use of these estimators in Section 5.

2. MODELING THE NETWORK USING AN
EVENT-BASED APPROACH

We assume that the system is as illustrated in the block di-
agram in Fig. 1. Sensor measurements yt from the plant,
are communicated through a wireless network channel to
give output zt . We assume that the true plant dynamics are
adequately captured by the discrete-time, linear, state-space
model shown in Eq. (1).

xt+1 = Axt +wt
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Fig. 1. Block diagram representation of system

yt = Cxt +vt (1)

where, xt ∈ℜn is the state vector, yt ∈ℜm is the output vector,
wt ∈ ℜn and vt ∈ ℜm are the state and measurement noise
vectors respectively. Terms involving the known manipulated
inputs are omitted in Eq. (1) because they merely introduce
a mean shift in the state-space. We assume that the initial
state vector and the noise vectors are i.i.d Gaussian random
variables, x0 ∼ N(µ0,Σ0), wt ∼ N(0,Q), vt ∼ N(0,R), where,
Σ0, Q and R are symmetric, positive definite matrices. For
simplicity, E

(

vtwT
t

)

= 0, E
(

x0wT
t

)

= 0 and E
(

x0vT
t

)

= 0,
where E( ) is the Expectation operator.

With these assumptions and in the absence of any missing
sensor measurements, the Kalman filter is used to compute
the minimum mean squared error state estimate [4, 5] for the
system represented by Eq. 1. We also assume that the matrix
pair, {A,Q1/2} is controllable and {A,C} is observable. This
ensures stability of the Kalman filter.

We define, Ys ≡ {y1, . . . ,ys}, Zs ≡ {z1, . . . ,zs}. Further,
we use the following definitions for the conditional expecta-
tions of the states and the corresponding error covariances:
xt|s = E (xt |Zs) and Pt1,t2|s = E

(

(xt1 −xs
t1)(xt2 −xs

t2)
T |Zs

)

For
convenience, when t1 = t2 = t, Pt1,t2|s is written as Pt|s.

We model the effect of the wireless channel on the sensor
measurements using a discrete random variable, Ft , which can
take values from the finite set, LFt = {F1,t ,F2,t , . . . ,Fs,t}

1, at
time t. Each of these states represents a different physical
event in the network. We use pi,t to denote the probability
that Ft = Fi,t . We make the following assumptions about this
discrete random process:

A1 LFt is an exhaustive set, i.e., ∑s
i=1 pi,t = 1.

A2 The state-space of Ft is time-invariant, i.e., Fi,t = F i ∀ i =
1, . . . ,s. Hence, we drop the time subscript in LFt .

A3 The vectors, zt and yt are of the same dimension, i.e., zt ∈
ℜm, and zt , which is obtained from the wireless channel
at time t is an element of the set, {y1,y2, . . . ,yt}.

A4 Measurements obtained from the wireless channel can-
not be out-of-sequence, i.e., if zi = y j, j ≤ i,zi+c /∈
{y1, . . . ,y j−1}, where c is a positive integer.

1LFt is referred to as “state-space of Ft ” [11], and each element is a pos-
sible “state of Ft ”

We now present a few simple cases to demonstrate our hybrid
system representation.

Missing observations: Consider the case of missing ob-
servations. In this case Ft , can be equal to either F1 or F2. If
Ft = F1, zt = yt , and if Ft = F2, no new observation is avail-
able from the network. Hence, zt = y j, where y j is the most
recent value successfully communicated through the network.

One sample delay: Consider the case where the network
could cause a delay in the transmission of the output vector. In
this case Ft , can be equal to either F1 or F2. If Ft = F1, zt = yt ,
i.e., the current measurement has been transmitted success-
fully and is available from the network at the same sampling
instant. If Ft = F2, the current measurement, yt , is delayed by
one sampling instant. Hence, zt = yt−1. However, due to our
assumptions A3 and A4, we cannot guarantee that yt will be
observed at the next sampling instant. If Ft+1 = F2, zt+1 = yt .
However, if Ft+1 = F1, then zt+1 = yt+1, i.e., the measure-
ment yt has been overwritten by yt+1 at the output buffer of
the network. Hence, it the delay case automatically includes
the missing-data case [10], if we make the reasonable assump-
tion that zt and yt are of the same dimension, m.

3. STATE ESTIMATION

Assuming that the model parameters {A,C,Q,R,µ0,Σ0} are
known, estimation objective can be stated as follows: Given
observations Zt , find a linear, recursive estimator x̂t|t of xt ,
which minimizes the trace of the estimation-error covariance
matrix Pt|t = E

[

(xt − x̂t|t)(xt − x̂t|t)
T
∣

∣Zt ].
To derive the state estimator, we will use innovation ap-

proach (which can be used to derive the Kalman filter [12])
. We will first briefly describe the method of innovation ap-
proach for derivation of classical Kalman filter and then derive
our state estimator. In rest of the paper, we assume µ0 = 0.
Results obtained can be easily extended to non-zero mean
case.

If no wireless link is present, the observations follow only
the model (1), and hence zt = yt . With these assumption
the model described in Section 2 reduces to simple state-
space model. As described in [12], innovation process is
based on the orthogonalization procedure, wherein we trans-
form {y1,y2, . . . ,yt} to an equivalent set of orthogonal vectors
{ẽ1, ẽ2, . . . , ẽt}, equivalent in the sense that they span the same
linear (sub)space, i.e.,

L {ẽ1, . . . , ẽt} = L {y1, . . . ,yt} (2)

Because of the orthogonality of {ẽ j}, the state estimate x̂t|t
given y1,y2, . . . ,yt can be found by separately projecting xt

along ẽ1, . . . , ẽt−1,

x̂t|t =
t

∑
j=1

Proj{xt along ẽ j}ẽ j =
t

∑
j=1

E[xt ẽT
j ]R

−1
ẽ, j ẽ j (3)

where Rẽ, j = E[ẽ j ẽT
j ]. Here Proj{xt along ẽ j} means “the pro-

jection of xt along the orthogonal variable e j (refer [12], chap-



ter 4, page 132). The next orthogonal vector corresponding
to the new observation yt+1 can be computed using Gram-
Schmidt orthogonalization procedure,

ẽt+1 = yt+1 −
t

∑
j=1

E[yt+1ẽT
j ]R

−1
ẽ, j ẽ j (4)

The orthogonal vector ẽt+1 can be regarded as “new informa-
tion” or the “innovation” in y t+1 given y1,y2, . . . ,yt , and the
process {ẽt} as the innovation process associated with {yt}.
This formulation can be used to derive the classical Kalman
filter recursion [12], which is summarized below:

x̂t|t−1 = Ax̂t−1|t−1, Pt|t−1 = APt−1|t−1AT +Q (5)

ẽt = yt −Cx̂t|t−1 Rẽ,t = CPt|t−1CT +R (6)

x̂t|t = x̂t|t−1 +Kt ẽt , Pt|t = Pt|t−1 −KtRẽ,tK
T
t (7)

where Kt = Pt|t−1CT R−1
ẽ,t

3.1. Innovation approach in the presence of wireless links

As stated in [12](Chapter 9, page 324), the major assumption
made in the earlier described method is that Rẽ, j are invertible
for all j, which corresponds to a nondegeneracy assumption
on the process {yt}, viz. that no variable yt can be estimated
without error by some linear combination of earlier variables.
Obviously, then, yt+1 /∈ L {y1, . . . ,yt} = L {ẽ1, . . . , ẽt} and
hence ẽt+1 6= 0, and Rẽ,t+1 is invertible.

However in the presence of wireless links, following the
model described in Section (2), this need not be always true.
For e.g. if the observation at time t +1 is lost, zt = y j where y j

is the most recent value successfully communicated through
the network. Hence zt+1 ∈ L {z1, . . . ,zt} and no new infor-
mation will be available in zt+1. In this case innovation will
be zero, and hence it’s covariance will not be invertible. This
is illustrated in Fig.3.1 for t = 3.

Hence not all observations will add dimensions to the sub-
space L {z1, . . . ,zt} and its dimension can be less than t. So if
we have a set of orthogonal vectors {e1,e2, . . . ,et}

2 equivalent
to the observations {z1,z2, . . . ,zt}, only some of the innova-
tions will be orthogonal basis for this subspace (and others
will be zero). We denote this set of non-zero innovations as
e+

t ≡ {e j : Re, j > 0,1 ≤ j ≤ t}, where Re, j = E[e jeT
j ] is co-

variance of the innovation at time j.
Then the earlier described orthogonalization procedure can

be modified by considering only the set e+
t for estimation and

discarding the other set of innovations3. The Eq. (4) will be
modified as,

et+1 = zt+1 − ∑
e j∈e+

t

E[zt+1eT
j ]R

−1
e, j e j (8)

2from now on we refer to {et} as innovation process corresponding to {zt}
3In other words, we are choosing the weights of the other innovations to

be zero
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Fig. 2. (Top) When z3 /∈ L {z1,z2}, a new dimension is added to the sub-
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Also the state estimates given by Eq. (3) can be rewritten
as:

x̂t|t = ∑
e j∈e+

t

E[xteT
j ]R

−1
e, j e j (9)

Using this modified innovation approach, we now derive
state estimator for different cases.

4. RECURSIVE ESTIMATOR FOR MISSING AND
DELAYED OBSERVATION

The events along with the innovations in the case of missing
observations are listed here:

Ft zt e+
t

F1 yt {et ,e+
t−1}

F2 y j, j < t e+
t−1

We can see that depending on the state of Ft , an innovation
will be added to the set e+

t . Based on this, the state estimator is
derived in Appendix A and summarized here in the following
theorem:

Theorem 1 (Recursive estimator for missing observation)
For the missing observation model described in Section 2, the
one-step state prediction can be obtained as,

x̂t|t−1 = Ax̂t−1|t−1, Pt|t−1 = APt−1|t−1AT +Q (10)

with x1|0 = 0 and P1|0 = Σ0. When observation is received, i.e.
Ft = F1, the filtered state estimates are computed by Eq. (7)
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of the classical Kalman filter. On the other hand for the case
of missing observation, we use the prediction x̂t|t = x̂t|t−1 and
Pt|t = Pt|t−1.

Note that when Ft = F1, new observation (and hence in-
novation) is available, and the estimator is similar to the
classical Kalman filter recursion. However when Ft = F2,
zt ∈ L {z1, . . . ,zt−1} and innovation is zero, and the correc-
tion term is missing in the Kalman filter. In [2], missing ob-
servations are modeled with an i.i.d. random process γt with
sample space {0,1}, on which pdf of the observation noise vt

is conditioned as follows:

p(vt |γt) =

{

N (0,R), when γt = 1
N (0,σ 2I), when γt = 0

(11)

As σ → ∞, the model corresponds to the missing observa-
tion. One can check that the estimator derived there, is similar
to our proposed estimator. However it seems that this model
cannot be extended easily for one sample delay case and the
approach of [2] is limited to missing observations only. We
now show that the event based approach is quite flexible in
this regard and it can be easily extended to the one sample de-
lay case. The one sample delay case is not as simple as the
missing observations, and the four cases involved are shown
in Fig. 3. These cases can be described by using four events
which are listed in this table:

Case Ft−1 Ft e+
t

I F1 F1 {et ,e+
t−1}

II F2 F1 {et ,e+
t−1}

III F2 F2 {et ,e+
t−1}

IV F1 F2 e+
t−1

Except the case IV, in all the others, an innovation will be
added at time t to the set e+

t−1. The estimator, derived in Ap-
pendix B, is summarized in the following theorem:

Theorem 2 (Recursive estimator for one sample delay case)
The one-step state prediction can be obtained as the classical
Kalman filter with Eq. (5). The filtered state estimates are
computed for different cases as follows:

A. For case I, II with Eq. (7) of classical Kalman filter.

B. For case III still use Eq. (7), but with different innova-
tions and Kalman gain computed as

et = zt −Cx̂t−1|t−1 (12)

Re,t = CPt−1|t−1CT +R (13)

Kt = APt−1|t−1CT R−1
e,t (14)

C. Case IV x̂t|t = x̂t|t−1 and Pt|t = Pt|t−1

The results are intuitive as in cases I and II, classical
Kalman filter4 is used as the observations are available. Case
III is similar to a Kalman filter recursion at time t−1, and then
a prediction (and hence multiplication by A). Case IV is sim-
ilar to missing observation as the observation is repeated and
no new information is available. A similar estimator has been
derived in [13] with innovation approach, however zero inno-
vations have been forced to have invertible covariance, which
introduces additional error in estimation. We will show this
with simulations in Section 5.

5. NUMERICAL EXAMPLE

In this section, we present numerical examples to demon-
strate the performance of the proposed estimators. We con-
sider the model described in Section 2 with A = 0.95,C =
1,Q = 0.1,R = 0.9,x0 = 0,Σ0 = 1.025641. Note that this cor-
responds to a scalar case with m = n = 1. Also we have chosen
p1,t = 0.5.

The Fig. 4 and 5 show the state estimates for missing obser-
vation and one sample delay case respectively. We can see that
error variance varies with time (unlike the classical Kalman
filter). Whenever an observation is lost (or delayed with case
IV), innovation is zero and the error variance increases be-
cause the correction term is not available then. However it
starts decreasing in the other cases.

As stated earlier in Section 4, one sample delay estimator
derived in [13] forces zero innovations to have invertible co-
variance. To show this we compute averaged error covariance
P̄t|t for 1000 realizations using both the estimators, the one
derived in [13] and our proposed estimator. P̄t|t is computed
as: P̄t|t = 1

999 ∑1000
i=1 Pi

t|t where Pi
t|t is the error covariance for ith

realization. Fig. 6 shows the comparison, where we can see
that because of the proposed modification the error variance
has reduced.

6. CONCLUSIONS AND FUTURE WORK

A general framework has been presented for state estimation
in systems which have wireless devices. Using this frame-
work, optimal, recursive, online state estimators have been de-
veloped for the cases where the wireless network introduces

4Note that the innovations are different in both the cases
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random delay and missing observation effects. Preliminary
results on simulation case-studies indicate that the state es-
timates obtained using this approach have better accuracy in
comparison with earlier approaches.

A. RECURSIVE ESTIMATOR FOR MISSING
OBSERVATION

For all e j ∈ e+
t , E

[

xteT
j

]

in Eq.(9) can be expanded using
Eq.(8) as follows,

E
[

xteT
j

]

= E
[

xtzT
j

]

− ∑
ek∈e+

j−1

E
[

xteT
k

]

R−1
e,k E

[

z jeT
k

]T
(15)
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Fig. 6. Comparison of error covariance of the proposed estimator (thick
line) and estimator in [13] (thin line).

for 2 ≤ j ≤ t, and E
[

xteT
1

]

= E
[

xtzT
1

]

for j = 1. Also e j ∈ e+
t

implies Fj = F1, so that z j = y j, and the first term of Eq.(15)
can be rewritten as:

E
[

xtzT
j ] = E

[

xtyT
j ] = E

[

xtxT
j ]C

T = At− jRx, jC
T (16)

where Rx, j ≡ E[x jxT
j ]. Using this and Eq. (15), we can see

that there exists a function J j, satisfying,

E
[

xteT
j

]

= At− jJ j (17)

J j = Rx, jC
T − ∑

ek∈e+
j−1

A j−kJkR−1
e,k E

[

z jeT
k

]T
(18)

J1 = Rx,1CT (19)

Using this in Eq. (9), the state estimates are now given by:

x̂t|i = ∑
e j∈e+

i−1

At− jJ jR
−1
e, j e j (20)

A.1. Recursions for x̂t|t−1, Pt|t−1, x̂t|t and Pt|t

Using Eq. (20) with i = t−1, we get recursion for the one-step
state prediction,

x̂t|t−1 = ∑
e j∈e+

t−1

At− jJ jR
−1
e, j e j = Ax̂t−1|t−1 (21)

Putting i = t in Eq. (20) we get the filtered estimate,

x̂t|t = ∑
e j∈e+

t−1

At− jJ jR
−1
e, j e j + JtR

−1
e,t et = x̂t|t−1 +Ktet (22)

where Kt is defined as Kt ≡ JtR
−1
e,t . As expected when the

innovation is available, the prediction estimate can be cor-
rected to give filtered estimate. However as shown in missing
observation table, when et /∈ e+

t , then e+
t = e+

t−1 and hence,
x̂t|t = x̂t|t−1.

Next we get the recursion for Pt|t−1 using the difference of
state and estimator covariance matrices (similar approach can



be seen in [12], page 328). In the model given by Eq. (1), the
covariance matrix of the state-vector follows the recursion,

Rx,t = ARx,t−1AT +Q, Rx,t ≡ E[xtxT
t ] (23)

Defining covariance matrix of the one-step state predictor as
Σt|t−1 ≡ E

[

x̂t|t−1x̂T
t|t−1

]

, using the Eq. (21), we have, Σt|t−1 =

AΣt−1|t−1AT with initial condition Σ1|0 = Σ0. But as x̂t|t−1 is
orthogonal to xt − x̂t|t−1, and xt = (xt − x̂t|t−1)+ x̂t|t−1, we get,

Rx,t = Pt|t−1 +Σt|t−1 (24)

so that, Pt|t−1 = Rx,t −Σt|t−1 = APt−1|t−1AT +Q
Similarly, defining the covariance matrix of the filtered state

estimator as Σt|t ≡ E
[

x̂t|t x̂T
t|t

]

, we have,

Σt|t =

{

Σt|t−1 +KtRe,tKT
t , for et ∈ e+

t
Σt|t−1, for et /∈ e+

t
(25)

and similar to Eq. (24), we have Rx,t = Pt|t +Σt|t , using which
we get

Pt|t =

{

Rx,t −Σt|t = Pt|t−1 +KtRe,tKT
t , for et ∈ e+

t
Pt|t−1, for et /∈ e+

t
(26)

Note that (see Table in missing observation case), et ∈ e+
t ,

when Ft = F1 and et /∈ e+
t , when Ft = F2, and hence the cor-

responding equation for filtering and prediction of Theorem
1.

A.2. Expressions for et and Re, j

For all e j ∈ e+
t−1, we can write,

E[zteT
j ] = E[yteT

j ] = CE[xteT
j ]+E[vteT

j ] = CAt− jJ j (27)

Substituting this into Eq. (8), we get expression for innovation
at time t: et = zt −Cx̂t|t−1 where the Eq. 21 has been used.

Using the fact that et is orthogonal to the past innovation
variable, we can write an expression for Re,t using Eq.(8):

Re,t = E[eteT
t ] = E[ztzT

t ]− ∑
e j /∈e+

t−1

E
[

zteT
j

]

R−1
e, j E

[

zteT
j

]T
(28)

with Re,1 = E[z1zT
1 ]. We compute E[ztzT

t ] as follows:

E[ztzT
t ] = E[ytyT

t ] = CE[xtxT
t ]CT +R = CRx,tC

T +R (29)

Substituting it into Eq. (28) along with E[zteT
j ] from Eq. (27):

Re,t = CRx,tC
T +R− ∑

e j /∈e+
t−1

CAt− jJ jR
−1
e, j J

T
j (At− j)TCT(30)

From Eq. (21), we note,

Σt|t−1 = E
[

x̂t|t−1x̂T
t|t−1

]

= ∑
e j /∈e+

t−1

At− jJ jR
−1
e, j J

T
j (At− j)T (31)

Using this in Eq. (30),

Re,t = CRx,tC
T +R−CΣt|t−1CT = CPt|t−1CT +R(32)

where the last step is by using Eq. (24).

A.3. Expression for Kt

As Kt = JtR
−1
e,t , we first compute Jt . Eq.(18) can be rewritten:

Jt = Rx,tC
T − ∑

e j∈e+
t−1

At− jJ jR
−1
e, j J j(A

t− j)TCT (33)

= Rx,tC
T −Σt|t−1CT = Pt|t−1CT (34)

so that, Kt = Pt|t−1CT R−1
e,t .

B. RECURSIVE ESTIMATOR FOR ONE SAMPLE
DELAY CASE

For the case IV, as shown in Fig. 3, et /∈ e+
t . So the estimator

will be similar to classical Kalman filter without correction
term. In cases I and II, we have zt = yt , hence the estimator
will be the same as the missing observation case when Ft =
F1. In case III, as zt = yt−1, the estimator can be derived just
by replacing yt by yt−1 in the missing observation case to get:

et = zt −Cx̂t−1|t−1 (35)

Re,t = CPt−1|t−1CT +R (36)

Kt = APt−1|t−1CT R−1
e,t (37)
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