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Introduction

Carbon dioxide-expanded liquids are obtained by mixing organic liquids with compressed

carbon dioxide. These liquids are being investigated as novel media for environmentally

friendly chemical processing at the Center for Environmentally Beneficial Catalysis at the

University of Kansas. We present the results of atomistic modeling of phase equilibria and

transport properties of several expanded liquid systems.

Simple intermolecular potential models available in the literature [1, 2, 3, 4, 5, 6] were

used to simulate the phase equilibrium properties of binary mixtures of carbon dioxide with

acetonitrile, methanol, ethanol, acetone, acetic acid, toluene, and octene. The calculations

were performed using the Gibbs ensemble Monte Carlo (GEMC) method [7, 8, 9, 10] with

the standard Lorentz-Berthelot combination rules. Calculations in the canonical ensemble

(NVT) were performed to determine the coexistence curve of the pure-component systems.

A total of N = 512 molecules in liquid and gas phases was used in all pure-component

simulations. Binary-mixture were simulated in the isobaric-isothermal ensemble (NPT) with

a total of N = 600 molecules placed in the two simulation boxes.

For pure carbon dioxide, pure acetonitrile and CO2-acetonitrile mixtures we have also

performed calculations of translational and rotational diffusion coefficients, which are basic
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measures of molecular mobility. These calculations involved nanosecond length molecular dy-

namics simulations with the program CHARMM [11] for systems of N=1024 total molecules

under NVT and NPT conditions.

Results

Vapor-Liquid coexistence curves of pure component systems were computed to test the

potential model of each molecule. The simulations reproduced accurately experimental data

of saturated liquid and vapor densities for carbon dioxide, methanol, ethanol, acetone, acetic

acid, toluene, and octene. For acetonitrile, the vapor-liquid coexistence data of our simula-

tions is only in qualitative agreement with experiment. Accurate densities were obtained in

the vapor phase for temperatures below 450 K while the liquid phase densities is approxi-

mately 15% low over the entire temperature range.

For the binary mixtures composed of carbon dioxide and organic solvents, we calculated

the volume expansion of the liquid phase defined as the total volume divided by the volume

of the pure organic solvent liquid. Calculations for pressures up to 50 bar were performed

for each mixture. Volume expansion results of our simulations are in close agreement with

experimental data for carbon dioxide expanded acetonitrile, methanol, ethanol, acetone, and

toluene systems. For acetic acid and octene binary mixtures with carbon dioxide, deviations

of the volume expansion from the experimental values were observed at higher pressures.

The transport coefficients of pure CO2 and pure acetonitrile at 298 K and 1 atm were

in good agreement with experimental data. The translational and rotational diffusion co-

efficients for the binary CO2-acetonitrile mixtures exhibited smooth variation between the

values of the pure components as the CO2 mole fraction was varied between 0.1 and 0.9.

Conclusions
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Use of published force field parameters and standard combination rules allowed us reli-

able predictions of properties for a number of carbon dioxide-expanded organic liquids. The

simulations may thus serve to complement and even substitute for experimental measure-

ments for these novel liquids which are being applied to limit the use of organic solvents and

tailor media physical properties in chemical processing.
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Figure 1: Vapor-liquid coexistence curves for carbon dioxide and ethanol. Experimental
data were taken from ref. [12] for CO2 and ref. [13] for CH3CH2OH.
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Figure 2: Volume expansion in carbon dioxide-acetonitrile system at 298.15 K. Experimental
data and simulation results are shown as line and symbol, respectively.
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Figure 3: Volume expansions in carbon dioxide-methanol system at 303.15 K (right) and in
carbon dioxide-ethanol system at 298.15 K (left). Experimental data and simulation results
are shown as line and symbol, respectively.
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Figure 4: Translational diffusion coefficients of acetonitrile and carbon dioxide in binary
mixtures. Results are for 298 K; pressures are 1 atm for pure acetonitrile and at vapor-liquid
equilibrium values for mixtures and pure CO2.
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Figure 5: Rotational correlation times for reorientations of molecular axes of acetonitrile
and carbon dioxide in binary mixtures. Results are for 298 K; pressures are 1 atm for pure
acetonitrile and at vapor-liquid equilibrium values for mixtures and pure CO2.
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