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Abstract

One of the challenges in a system-level approach in systems biology is the development of in
silico models from experiments that can accurately capture the cellular behavior. The hurdles in
this effort, known as reverse engineering, are multiple and include network size and complexity,
and quantity and quality of measurements. System analysis can help unraveling the complexity
in cellular networks. One such method is sensitivity analysis, which shows the dependence of
system behavior on model parameters. For the measurement aspect of modeling, information
theoretic approach such as the Fisher information matrix (FIM) can provide a measure of the de-
gree of information content in noisy measurement data for estimating the accuracy of parameter
estimates. These tools are included in a MATLAB-based graphical user interface (GUI) named
BioSens, for ease-of-use by non-experts in systems theory. The utility of sensitivity analysis
and the Fisher information matrix is demonstrated in the model development of staphylococcal
enterotoxin-B (SEB) response in kidney cells.

1 Introduction

A system-level understanding of cell behavior requires an accurate representation of the com-
plex interactions of gene/protein networks. Advances in molecular biology have provided a
glimpse of such complexity through diverse measurements of cellular activities such as gene
expression profiles using DNA microarrays. In systems biology, the goal of network inference
or reverse engineering problem is to reconstruct the complex network of regulatory interactions
from experiments using a mathematical model. Here, the reverse engineering effort faces two
daunting problems: network size and complexity, and incomplete and inaccurate measurements.
Network inference from experiments has been extensively investigated in the field of engineer-
ing, which is known as system identification. In addition, many concepts in engineering, such
as modularity, robustness, and optimality, have been observed in many biological systems. For
these reasons, engineering approaches have been instrumental in the reverse engineering ef-
fort.

The size and complexity of cellular networks make intuition inadequate for deducing cel-
lular behavior from the underlying gene and protein interactions. Systems analysis can help to
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unravel this complexity. One such method is sensitivity analysis [1], in which linear sensitivi-
ties quantify how much the system behavior changes as the parameters are varied. In cellular
networks, high sensitivities point to the weakest links in the system on which cellular behavior
strongly depends. Perturbations to these links can potentially lead to a large disruption in the
network behavior, i.e., the network is not robust (fragile) to the uncertainty in these pathways. By
mapping critical pathways back to the genome, one can point to the set of genes and interac-
tions that control the cellular behavior. Such information can be used for guiding data-fitting and
model refinement in the reverse-engineering of cellular networks.

BioSens [2] provides a sensitivity analysis toolkit that also includes a Fisher informa-
tion matrix based sensitivity measure and optimal measurement selection. Sensitivity analysis
in reverse engineering guides parameter estimation and model refinement, focussing on the
critical mechanisms of system behavior. The Fisher information matrix (FIM) conveys the infor-
mation content in (noisy) measurement data for parameter estimation. This matrix defines the
upper bound for achievable accuracy in the parameter estimates, given particular experiment
and measurement noise. In reverse engineering, the FIM can also be used for designing new
experiments or selecting system variables to be measured that maximize the informativeness of
data for better parameter accuracy and/or identifiability. In addition, the FIM carries multiple in-
terpretations as sensitivity measures that consolidate the dynamical sensitivities into coefficients
that are easy to compare.

This article presents the background theory underlying the tools in BioSens and the
application of these tools in the model development of staphylococcal enterotoxin-B (SEB) pre-
apototic pathways in kidney cells. Section 2 reviews the concept of sensitivity analysis and its
computation. Section 3 discusses the Fisher information matrix and its dual roles as information
measure and sensitivity ranking. An overview of the BioSens toolkit is presented in Section 4.
Finally, Section 5 describes the application of the sensitivity analysis and the Fisher information
matrix in the model development of SEB response.

2 Sensitivity Analysis

Sensitivity analysis elucidates the dependence of a system behavior on the parameters that
affect its dynamics. First-order sensitivity coefficients provide the simplest measure of this de-
pendence by quantifying the variations in the system outputs due to perturbations in the param-
eters:

Si,j =
∂yi

∂pj

(1)

where Si,j is the sensitivity coefficient of the i-th system output yi with respect to the j-th param-
eter pj. Although this definition implicitly assumes the continuity of the output with respect to the
parameters, sensitivity analysis has been developed for systems in which this assumption does
not hold, such as discrete stochastic systems [3]. The system outputs are typically comprised of
the states or some functions of the states.



The biological system of interest is described by coupled ordinary differential equations:

dx

dt
= f(x, t,p) (2)

where x ∈ Rn denotes the states, p ∈ Rm the parameters, t the time, and f consists of (nonlin-
ear) functions of the states, time, and parameters. There exist several methods to compute the
state sensitivities from Eq. (2) such as Direct, Green’s function, and finite difference methods
[1]. The output sensitivities in Eq. (1) can be directly computed from the state sensitivities. The
Direct and Green’s function methods obtain the state sensitivities by solving the derivative of (2)
with respect to each parameter

d

dt

∂x

∂pj

(t) = J(t)
∂x

∂pj

(t) +
∂f

∂pj

(t) (3)

where J(t) is the Jacobian matrix of f with respect to x (i.e., Ji,j = ∂fi/∂xj). The initial conditions
are typically zero except when pj is an initial condition of (2). The latter method solves a different
differential equation for the Green’s function matrix Γ(t, t′)

d

dt
Γ(t, t′) = J(t)Γ(t, t′), t ≥ t′ (4)

with the initial condition Γ(t′, t′) = I. The Green’s function matrix provides the sensitivities ac-
cording to

∂x

∂pj

(t) = Γ(t, 0)
∂x

∂pj

(0) +

∫ t

0

Γ(t, t′)
∂f

∂pj

(t′)dt′ (5)

Since t′ is the integrating variable, the adjoint equation of (4) is a more practical system to solve:

d

dt′
Γ†(t′, t) = −Γ†(t′, t)J(t), t′ ≤ t (6)

where Γ†(t′, t) = Γ(t, t′) and the initial condition is Γ†(t, t) = I. Thus the adjoint Green function
Γ†(t, t) must be solved backwards in time t′. The Green’s function method becomes more effi-
cient than the Direct method when the number of parameters exceeds that of the states. On the
other hand, the finite difference method uses a black-box approach by approximating the deriva-
tive of Eq. (1) using a finite difference. A second-order accurate finite difference approximation
of the sensitivity is given by:

Si,j =
yi(p + ∆pjej)− yi(p−∆pjej)

2∆pj

(7)

where ej ∈ Rm is a vector of zeros except for the j-th element which equals 1, and ∆pj denotes
the magnitude of j-th parameter perturbations. This magnitude is selected to be small enough
to limit the approximation error, but large enough to avoid dependence on simulation tolerance.



3 Fisher Information Matrix

One of the biggest challenges in reverse engineering of cellular networks is the availability
of data required to completely identify the chosen model structure. The selection of model struc-
ture (e.g., Boolean networks, differential equations) determines the types and amount of data
necessary to completely reverse-engineer the network [4]. For example, to identify p parame-
ters in a set of nonlinear differential equations, one theoretically needs 2p + 1 randomly chosen
experiments (assuming zero measurement noise) [5]. Problems arise because the available
(noisy) data do not have enough information to uniquely and/or accurately identify the model
parameters. This is known as the parameter identifiability problem in the field of system iden-
tification. Here, approaches from information theory such as the Fisher information matrix can
provide a mathematical measure of the informativeness of measurements. Such measures allow
for the estimation of parameter accuracy from a particular experiment, as well as the design of
experiments for maximizing the information content in measurements.

The Fisher information matrix (FIM) represents a measure of the information content in
noisy measurements for the identification of model parameters. When the measurement noise
follows the Gaussian distribution, the FIM reduces to [6]

FIM = STV−1
µ S (8)

where Vµ is the measurement covariance matrix. Using the Cramer-Rao inequality [7], the upper
bound for the parameter accuracy can be derived from the FIM

Vp ≥ FIM−1 (9)

where Vp denotes the parameter covariance matrix. The diagonal elements of the matrix Vp

give the parameter variances. The 95% confidence interval for each parameter pi can be defined
as

[pi − 1.96σpi
, pi + 1.96σpi

] (10)

where σpi
denotes the standard deviation of the i-th parameter (i.e., the square root of parameter

variance). In BioSens, a parameter is called practical identifiable when its estimated value is
non-zero within a 95% confidence.

The Gaussian assumption may not apply for gene expression as this process involves
chemical species that have very low concentrations (nanomolar level), that is, the gene expres-
sion behaves as a discrete stochastic system. In such a case, the noise in the system can
become non-Gausssian (e.g., log-normal or bimodal distributions). Nevertheless, the FIM can
still be evaluated using a direct analysis of the chemical master equation using the general for-
mula [3]

FIM = E
[
(∇p log ρ) (∇p log ρ)T

]
(11)

where ρ is the probability density function of the states. For discrete stochastic systems, the
FIM can be evaluated by simulating the chemical master equation (CME) for the joint probability
density function of the states ρ. This simulation uses a Monte Carlo approach such as the
stochastic simulation algorithm [8] or its approximate accelerated algorithm [9].



As a measure of information, the FIM provides an avenue for designing experimental
protocols that maximize the utility of measurement data for parameter identification. One aspect
of this design is the selection of measurements that will have the most information for parameter
identifiability and accuracy. Given a particular input-output experiment, this process consists
of two steps; first, the removal of parameters that are not a priori identifiable, and finally, the
optimization of some measures of information based on the FIM. A priori identifiability relates to
the ability to uniquely identify parameters from perfect measurements. In BioSens, the first step
uses the orthogonal procedure proposed by MacAuley and coworkers [10], which is a geometric
based approach where the number of a priori identifiable parameters correlates with the rank of
the orthogonalization of the scaled sensitivity matrix Ŝ:

Ŝi,j =
∂yi

∂pj

pj

yi

(12)

The parameters corresponding to the columns of orthogonalized sensitivity matrix are deemed
unindentifiable if the norms are smaller than a given tolerance. The measurement selection
then chooses the system variables (states) that can maximize some measures of information
with respect to the a priori identifiable parameters. Figure 1 illustrates the two most effective
FIM-based optimality criteria, D-optimal and A-optimal, in designing experiments [11]. D-optimal
design aims to maximize the degree of informativeness in data by maximizing the determinant
of FIM, which corresponds to the area/volume of information hyperellipsoid (Figure 1a). On the
other hand, A-optimal design is equivalent to reducing the hyperellipsoid of uncertainty in param-
eter estimates (Figure 1b). BioSens includes both of these optimality criteria in the measurement
selection tool.

BioSens also adopts the Fisher Information Matrix as a measure of the sensitivities. The
formulation in Eq. (8) motivates a new use of the FIM as a consolidation of (weighted) sensi-
tivities. In general, the FIM captures the sensitivity of the (log) distribution with respect to the
parameters as shown in Eq. (11). The use of the FIM as a sensitivity measure requires novel in-
terpretations of the properties of this matrix. The FIM captures not only the first order sensitivities
of the system, but also the effects of parametric interactions (second order sensitivities). Three
sensitivity measures can be derived based on the FIM - the diagonal elements, the eigenvalues,
and the inverse of standard deviations (i.e., the inverse of the diagonals of Vp).

The diagonal elements of the FIM represent the magnitudes of the sensitivities with
respect to each individual parameter. Under the Gaussian assumption, these elements are
equal to the weighted norms of the first order sensitivities:

FIMi,i = ST
i V−1Si = ||Si||2V−1 (13)

where Si is the i-th column of the sensitivity matrix. The eigenvalues of the FIM represent the
magnitudes of the sensitivities with respect to simultaneous parameter variations whose rela-
tive magnitudes and directions are given by the corresponding eigenvectors. The product of
the eigenvalues presents an index of the information content for use in the design of optimal
experiments, which is the aforementioned D-optimality. Here, each eigenvalue is assigned as
the sensitivity measure with respect to the parameter that corresponds to the element of the
eigenvector with the largest magnitude. Thus, a parameter may have more than one sensitivity
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Fig. 1: Fisher information matrix-based optimality criteria. The axes represent the model param-
eters where the origin describes the best parameter estimates. For simplicity, only two
parameters are shown. In a system with three of more parameters, these ellipses are pro-
jections of the higher dimensional ellipses (hyperellipsoids) onto two-parameter axes. (a)
The ellipse of information. The ellipsoidal axes are defined by the FIM eigenvalues and
eigenvectors. The area quantifies the amount of information, while the shape indicates
the distribution of information for each parameter. D-optimality design aims to maximize
the area/volume of information (as indicated by the arrows), which is proportional to the
determinant of FIM. (b) The ellipse of parameter uncertainty. The lengths of the ellipsoidal
axes equal to the inverse of the eigenvalues of FIM. A-optimal design aims to reduce the
region of parameter uncertainty (shown by the arrows), which is measured by the sum of
the parameter variances.

measure, while others may not have an assigned measure (i.e., there may not be a one-to-one
correspondence between the eigenvalues and the parameters). Finally, the diagonal elements
of the matrix Vp are the square of the standard deviations of the parameters. The sum of the
standard deviations is used in the A-optimal design of experiments. Based on Eq. (9), the stan-
dard deviations inversely correlate with the sensitivity of the system. As with the eigenvalue
measures, the standard deviations incorporate the parametric interactions, but without the prob-
lematic one-to-one correspondence. The computation of standard deviation, however, is more
prone to numerical inaccuracy in matrix inversion. These new interpretations of the diagonal
elements, eigenvalues, and standard deviations of FIM provide sensitivity measures with differ-
ent attributes, and thus should be utilized and compared accordingly. In BioSens, the sensitivity
ranking is based on the diagonal elements of the FIM due to the difficulties with the eigenvalue-
and standard deviation-based measures, i.e., one-to-one correspondence and matrix inversion
issues, respectively.

4 BioSens Overview

BioSens is a part of Bio-SPICE program, in which the term SPICE stands for Simulation
Program for Intra- and Inter-Cell Processes. Bio-SPICE contains a suite of tools for model de-
velopment (including data mining and analysis), analysis, and simulation of biological systems
(freely available at http://www.biospice.org). BioSens is implemented with a Matlab GUI and can



be run from the Bio-SPICE Dashboard via the BioMat Bridge, or directly from Matlab. It accepts
SBML and XPP (*.ode) model files as input, which are then parsed to an intermediate ODE-
based format conducive to fast loading. Using the GUI, the user is able to run simulations of
the model, perform sensitivity analysis (Sensitivity Tool), rank the parameters according to their
relative sensitivities (FIM Tool), and determine the optimal states to measure in an experiment
(Measurement Selection Tool). Figure 2 illustrates the data flow for BioSens.
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Fig. 2:
Layout of BioSens

1) Parser: Load an SBML file into BioSens and converting it to an internal format of ODEs.
2) Simulator: Simulate the model and perform sensitivity analysis on selected parameters.
Outputs are saved in Matlab data format (.mat).
3) FIM: Give ranking of the system sensitivities according to the diagonal entries of the
FIM.
4) Measurement Selection: Determine the optimal measurement set that maximizes the
informativeness of experimental data.

The Sensitivity Tool uses one of two simulation engines - XPP [12] or DASPK [13]. In
this work, we focus on the DASPK implementation because it computes the sensitivities more
efficiently and accurately than the implementation that uses finite difference approximations and
XPP. The FIM Tool then computes the FIM using the computed sensitivities and a covariance



matrix provided by the user. The diagonal entries are used to rank the parameters from least to
most sensitive.

The Measurement Selection Tool then allows the user to eliminate parameters that are
not practically identifiable (which can be done with minimal effort because the settings from the
FIM Tool are used as the default settings for this tool), and then obtain an optimal set of mea-
surements using either the A-optimality or D-optimality criterion. The computation is performed
in Matlab and the output is both displayed to the user and saved to a file.

5 SEB Modeling Application

The sensitivity analysis and the Fisher information matrix tools in BioSens have been ap-
plied in the model development of staphylococcal enterotoxin B (SEB) response in kidney cells,
as part of the pre-apoptosis use-case in Bio-SPICE. Initially, BioSens was used to simulate early
versions of the SEB models to check for the correct behavior, e.g., apoptosis in the presence
of SEB, and vice versa, no apoptosis in the absence of SEB. The simulations were also used
for calibrating the time scales of key processes such as nf-κb and akt activations. Here, the
FIM-based sensitivity analysis was able to guide the parameter and initial value refinements for
the model to give the desired behavior [14].

Subsequent use of BioSens focused on the model refinement. Sensitivity analysis cou-
pled with a comparative study of the diagonal elements of the FIM, provided the information for
iteratively refining the model. This iterative process involved incorporating more details in the
subnetworks where the system is highly sensitive, using literature searches and database such
as GENEWAYS [15] (performed by Dr. Zhang at the University of California Berkeley). Addi-
tional details were included in the SEB model to describe: mitochondria control switch through
Bcl-2, negative feedback on ERK through MKP, post-translational regulation of transcription fac-
tors fkhr and nf-κb, export of death ligands and TNF-α with subsequent activation of death re-
ceptor apoptosis pathway, and numerous cross-talks between the upstream kinase cascades,
central transcription factors and downstream apoptotic modules [14]. Figure 3 shows an exam-
ple of sensitivity analysis of the SEB model in the two regimes: with and without SEB treatment.
The information from such analysis guided the model refinement to include more details in the
model (in this case, to the pathways activating ERK and c-MYC and their downstream cross-
talks). The differences between the analysis in the presence and absence of SEB also indicated
regime-dependent sensitivities, which suggested a divergence in the signalling routes between
the normal (no-SEB) and SEB-induced toxic shock responses. During the iterative model re-
finement, the model evolved from 77 states and 179 parameters, to a more detailed system with
117 states and 356 parameters. Figure 4 show the evolution of SEB response model during the
model refinement process.

Figures 5 and 6 show the dynamic and sensitivity responses of the latest SEB pre-
apoptosis model, respectively. The transient response was localized early (within 2000 seconds)
and followed by steady state behavior. The sensitivities also exhibited similar response in which
the sensitivities to different parameters peaked at different times. This behavior motivates using
a temporal sensitivity analysis to investigate the dependence of behavior in different dynamic



Fig. 3: Sensitive pathways in two dynamic regimes: without SEB (left) and with SEB (right). The
colored boxes represent the pathways to which the system behavior is highly sensitive.

regions, which is currently under development for BioSens. Such temporal analysis can be used
in the determination of the optimal time window(s) to administer drugs for SEB. The FIM-based
sensitivity analysis of this model using BioSens suggests that the sensitive pathways in the
network are highly localized (i.e. there are hot spots) around the ERK, NF-κB and PI3K modules
as indicated in Figures 7 and 8. The transcription factor NF-κB is highly conserved among many
organisms (from Drosophila to human) and primarily responsible for controlling immune and
inflammatory responses [16]. In apoptosis, NF-κB has been found to exert both pro- and anti-
apoptotic effects [17]. The phosphoinositide 3-kinases (PI3K) is a family of signal transducers
which is responsible in regulating several transduction pathways for various cellular functions
including apoptosis [18]. The ERK belongs to mitogen activated protein kinases (MAPK) and
participates in the signalling cascades for growth factor stimulations via tyrosine receptor kinases
[19].

These hot spots have several implications. First, further model refinements on the hot
spots in the network may be necessary. Second, when the model is sufficiently accurate, the
differences between the analysis with and without SEB treatment, such as shown in Figures 7
versus 8 and in Figure 3, can have physiological relevance and provide the candidate pathways in
the network for targeted detection and/or therapy of the SEB toxin response. On the other hand,
where there exist cold spots (i.e., insensitive pathways) in the network, the model size can be
reduced by eliminating or combining the corresponding pathways. In Figure 7, these “cold” spots
concentrated on the pathways downstream of NF-κB (regulated production of several species
by NF-κB), and the interconversions among RASGRP, PK, and NF-κB species. Possible model



Fig. 4: The evolution of SEB response model.
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Fig. 7: FIM-based sensitivity analysis of SEB preapoptotic model with SEB treatment (toxic
shock response). The analysis shows localized ”hot spots” in the network for sensitivity
marked as red dots and ”cold spots” marked as blue dots.



Fig. 8: FIM-based sensitivity analysis of SEB preapoptotic model without SEB treatment (normal
response). Again, the analysis shows localized hot spots in the network for sensitivity
marked as red dots.



reductions can be done, for example, by representing the different (activated) states of RASGRP,
PK, or NF-κB as a single state.

The sensitivity analysis results, in particular the localized hotspots, confirmed the tran-
scription and clustering analysis (PAINT [20] and NCA [21] analysis) of time-series gene expres-
sion data. In addition, the comparison between the analysis of the SEB response in the two
dynamic regimes indicated that the presence of SEB evoked different signalling pathways from
the normal response. In particular, the pathways involving ERK and PI3K activations were sen-
sitive in the SEB-treated system, but were not sensitive in the absence of SEB (NF-κB pathways
was sensitive in both regimes). The use-case effort now focuses on the ERK module to obtain
more accurate representation of these critical pathways in the SEB response. By focusing on
smaller subnetworks guided by sensitivity analysis, the model development is decomposed into
numerically tractable steps.

6 Conclusions

A key aspect in systems biology concerns the reverse engineering of cellular network from
experiments to create an accurate in-silico representation. The difficulties in this problem stem
from the high complexity of cellular systems and the quality of experimental data. Systems
theoretic approaches, in particular from the field of model identification, can help unravel the
complexity and quantify the data informativeness, using sensitivity analysis and Fisher infor-
mation matrix. The two methodologies are implemented in BioSens providing ease-of-use for
non-experts. The application to the model development of SEB response highlighted the util-
ity of BioSens in guiding model refinement. In addition, the sensitivity analysis of SEB model
showed clustering of hot- and cold-spots, indicative of high and low sensitivities. In this case, the
hot spots which were in agreement with measurements, gave support to a focused study on the
ERK signalling role in SEB response.
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