52a The Effect of Various Small Heat Shock Proteins on Prevention of Beta Amyloid Aggregation and Toxicity

Sungmun Lee and Theresa A. Good

 β -amyloid ($A\beta$) is a main component of senile plaques in Alzheimer's disease (AD). $A\beta$ readily forms fibrils via a conformational change. $A\beta$ is toxic in vitro when it is aggregated. Many research groups have focused on prevention of $A\beta$ aggregation and toxicity. Recently we found that Hsp20 from B. Bovis prevented $A\beta$ aggregation and toxicity at very low mole ratios of small heat shock protein to $A\beta$. In this work, we explore the mechanism of Hsp20 interaction with $A\beta$ and compare its activity to several other small heat shock proteins. Our results suggest that Hsp20 interacts with $A\beta$ via multivalent binding, which leads to productive aggregation prevention and toxicity prevention over a very limited range of protein concentrations. Other small heat shock proteins interact with $A\beta$ via different mechanisms and while they are able to prevent $A\beta$ aggregation, they can't prevent $A\beta$ toxicity. These results highlight the unique properties of Hsp20 in $A\beta$ aggregation and toxicity prevention. Understanding the mechanism of Hsp20- $A\beta$ interaction may provide insights on how best to design the next generation of aggregation and toxicity inhibitors for AD.