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Abstract 
Short-term scheduling of multipurpose batch plants is a challenging problem for which several 
formulations exist in the literature. In these plants, there are many kinds of resource 
constraints which often lead these problems even tougher. Based on the work of 
Sundaramoorthy & Karimi (2005), we extend the mixed integer linear programming (MILP) 
formulation to the problems with different kinds of resource constraints. Due to the same 
continuous-time representation with synchronous slots with the original formulation, our 
extended formulation with fewer binary variables, constraints, and nonzeros seems to have 
good efficiency for these tough problems. Finally, several examples will be illustrated to 
demonstrate the superiority of our model. 
 
INTRODUCTION 

Short-term scheduling of multipurpose batch plants has received considerable 
attention in the last decade. Early attempts (Kondili et al., 1993, Shah et al., 1993) used mixed 
integer linear programming (MILP) formulations based on the uniform discrete-time 
representation. However, as the advantages of alternate representations such as non-uniform 
discrete-time (Mockus and Reklaitis, 1994; Lee et al., 2001) and continuous-time became clear, 
the recent trend (Ierapetritou and Floudas, 1998; Castro et al., 2001; Giannelos and 
Georgiadis, 2002; Maravelias and Grossmann, 2003) has favored continuous-time 
representations. 
 

The research efforts using continuous-time representation in batch process scheduling 
have opted to tag themselves with two flavors. The so called slot-based formulations (Karimi & 
McDonald, 1997) represent time in terms of ordered blocks of unknown variable lengths. The 
so called event-based formulations (Ierapetritou and Floudas, 1998; Giannelos and Georgiadis, 
2002) use unknown points in time at which events such as starts of tasks may occur. 
Maravelias and Grossmann (2003) recently attempted to rationalize the different types of time 
representation. 

 
Sundaramoorthy & Karimi (2005) presented a slot-based continuous-time formulation 

for short-term scheduling in multipurpose batch plants. Their formulation required no big-M 
constraints and a few binary variables. In their evaluations on a variety of test problems, they 
proved that their formulation performed best compared to other formulations (Maravelias and 
Grossmann, 2003; Giannelos and Georgiadis, 2002) in the literature. In their work, they 
considered only materials and units as resources. In this paper, we extend their basic 
formulation to account for utilities besides materials and units. We present an example to 
illustrate performance of our model. 



 
We begin with a problem statement followed by a brief discussion on the basic 

formulation. We then present the extension to it, and finally illustrate its performance with an 
example. 

 
PROBLEM STATEMENT 

A multipurpose batch plant or production facility (F) produces multiple products using a 
number of shared production units that constrain the plant operation. We use recipe diagram 
(RD) to describe the productions in F. The facility houses J (j = 1, 2, …, J) units and performs I 
(i = 1, 2, …, I) tasks. Each unit j can perform a set Ij of tasks in the RD. Similarly, a set Ji of 
units can perform a task i. We use index m to represent materials in the RD. Let Mi denote the 
set of materials (m ∈ Mi) that a task i consumes or produces. Mi includes all the different states 
of raw materials, intermediates, and final products associated with task i. For each task i, we 
propose a general mass balance as, 
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where, σmi is analogous to the stoichiometric coefficient of a species in a chemical reaction 
except that it can be in kg/kg units instead of mol/mol. Thus, σmi < 0, if task i consumes 
material m ∈ Mi and σmi > 0, if it produces m ∈ Mi. Furthermore, for each task i, we designate a 
primary material µi, with respect to which we define the extent of task i. The batch size of a 
task i is defined as the amount of the primary material µi that task i consumes or produces in a 
batch. 
 

For the short-term scheduling of such a multipurpose batch plant with resource 
constraints, we need to determine: 
(i) the optimal sequence and schedule of different tasks on each unit 
(ii) the batch size of each batch of each task on each unit at various times 
using: 
(a) RD for the plant with material and unit requirements 
(b) Suitability of units (processing and storage) and utilities for tasks, their capacity limits, and 

batch processing time information 
(c) Time horizon H for profit maximization or fixed product demands Dm for makespan 

minimization 
(d) Final product revenues, net or otherwise 
(e) Time and schedule of resource consumption  
 

We consider only two scheduling objectives (maximizing the profit/revenue from the 
sales of finished products and minimizing the makespan) in this work. However, other 
objectives such as minimizing inventory, production, or setup costs and even minimizing the 
tardiness or earliness can be readily accommodated in the proposed formulation with minor 
modifications. We assume the following in our formulation. 
1. Transfer and setup times are lumped into batch processing times of tasks. 
2. The batch processing time of task i on unit j is either a constant (τij) or varies linearly with its 

batch size as αij + βij(Batch size), where αij and βij respectively are known. 
3. Product revenues have accounted for various production costs. 
 



MILP FORMULATION 
Sundaramoorthy & Karimi (2005) proposed a novel slot-based continuous-time MILP 

formulation for short-term scheduling in multipurpose batch plants. Their formulation uses no 
big-M constraints, fewer binary variables, constraints and nonzeroes. They believed that all 
these features contributed to the computational superiority of their formulation. Since we will 
extend their work for general resource constraints, we discuss their formulation briefly in the 
following section. We use the same notations for variables and parameters. Further details can 
be seen in Sundaramoorthy & Karimi (2005). 
 

Tk = Tk–1 + SLk (1) 
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Eqs. (1) and (2) define the slot arrangement in the time representation used by this formulation. 
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 Eq. (3) makes sure that at most one task can start on a unit j at any Tk.. Eq. (4) enforces that 
when task i does not start at Tk, then Bijk = 0, and vice versa. 

yijk = yij(k–1) + Yij(k–1) – YEijk 0 < k < K (5) 
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 + Zjk = 1 0 < k < K (7) 

yijk + Yijk ≤ 1 0 < k < K (8a) 
yijk + YEijk ≤ 1 0 < k < K (8b) 

About five equations define status of a processing unit. Eqs. 3, 5, 6, 7, and 8 force yijk and YEijk 
to be 0 or 1 only (even though they are continuous 0-1 variables), as long as Yijk are binary. In 
fact, it is easy to see that eqs. 3, 6, and 7 make eqs. 8a-b redundant. Also, with eq. 5 in effect, 
one of eqs. 3, 6, and 7 is redundant.  
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bijk = bij(k–1) + Bij(k–1) – BEijk i > 0, k > 0 (10) 
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Eq. (9) gives a time balance at Tk+1 in unit j. Similar to the status of task assignment on a unit, 
Eqs. (10)-(13) define batch amount balance in unit  j 
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Eq. (14) involves with the inventory balance for a material m at Tk. 
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Bijk, bijk, BEijk ≤ U
ijB   (18) 

Zjk, yijk, YEijk, SLk, tjk, Bijk, bijk, BEijk, Imk ≥ 0  (19) 
Finally, the following equations impose upper and lower bounds on all variables in the 
formulation. 
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With Eq. (20) as objective function, the formulation for maximizing sales or revenue comprises 
eqs. 2-6, 9-14, 20, and the bounds (eqs. 15-19). While using Eqs. (21) and (22), the complete 
formulation for minimizing the makespan comprises eqs. 3-6, 9-14, 21, 22, and the bounds 
(eqs. 15-19). 
 
EXTENSION TO BASIC FORMULATION 

The above basic formulation has not considered resources other than materials and 
units (processing and storage). However, there are several other resources such as utilities 
and manpower that can significantly impact the production amounts. In the following, we 
mainly consider the availability of utilities such as steam, cooling water and electricity for a 
smooth production. These utilities are available only in limited quantities, which each 
production task has to share. Thus, scheduling of production tasks must monitor the availability 
of utilities throughout the horizon so that they are consumed without any violation in the limits. 

  
We assume that whenever a task i begins on unit j, a fixed amount (σuij) of utility u is 

consumed. Based on the batch size Bijk, an additional amount (τuij) of utility u is also required. 
Since we synchronize the slots on all units at each time point, we are able to monitor the 
availability of utilities easily. Let Uuk represent the total consumption of utility u at Tk. Then,   
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Obviously, Uuk should be within available limits at each time point. Thus, 
max0 uk uU U≤ ≤   (24) 

Where max
uU is the maximum available limit of utility u. Eqs. 23 and 24 along with the basic 

formulation accounts for constraints on resources such as materials, production units, storage 
units and utilities. 
 
EXAMPLE 

We considered Example 2 from Maravelias and Grossmann (2003) to test the 
performance of our model. All the necessary data and description of the example can be seen 
in the above paper. Given the price and demand details, the objective is to maximize the sales 
of products. We solved the above problems in GAMS 21.7 (Brooke et al., 1998) using CPLEX 
9.0 on IBM P4 machine with 512 MB RAM. The model required 50 binary variables, 407 
continuous variables, 424 constraints and 1469 nonzeroes. Our model took 8.2 CPU s to 



obtain the optimal value of $6499.31. The optimal schedule gave a detailed plan of production 
activities for the given horizon of 8h without any violation of the available resources. 
 
CONCLUSION 

The novel continuous-time formulation presented in this paper uses synchronous slots 
and does not decouple tasks from units (i.e. uses 3-index binary assignment variables), but it 
still has fewer binary variables, constraints, and nonzeros. At the same time it is simpler, more 
efficient, and potentially tighter than the best models (event-based or otherwise) in the 
literature on short-term scheduling in multipurpose batch plants. In contrast to the existing 
models, it is equally efficient for both sales maximization and makespan minimization even 
with variable batch processing times, and has no big-M constraints. We believe that the latter 
may be a major contributor to our model’s better efficiency. Lastly, this paper presents a novel 
idea of balances (time, mass, resource, etc.) in developing scheduling formulations, and 
considers resource constraints on materials, units and utilities. 
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