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Model-based control is widely used in chemical processes. Model fidelity is the key 
factor influencing the performance of these controllers. Usually, these process 
models are identified using open-loop step tests during the initial, commisioning 
phase of the control system. However, with the passage of time, mismatches 
develop between the process and its model. These could be caused, for example, by 
physical changes in the process and changes in the operating conditions. In general, 
this model-plant mismatch increases with time and leads to a degradation in the 
closed loop performance. In order to restore satisfactory performance, it might be 
necessary to repeat the identification exercise and retune the controller using the 
new model.  
 
The disadvantage of using traditional open-loop step tests for this purpose is that 
they are time-consuming, affect the productivity and are prohibitively expensive. 
Closed loop identification provides an attractive alternative for re-identifying the 
models. It uses data collected when the process is under closed-loop control, i.e., the 
controller is regulating the process. One of the main advantages of using closed-loop 
identification is that the controller attempts to preserve the system performance to 
some extent, while ensuring that constraints are not violated. Additional advantages 
include disturbance reduction, safe operation and better control-relevant models. The 
price to pay is in terms of the inherent reduction in the excitation, which could lead 
to poor signal-to-noise ratios. In addition, there can be a significant correlation 
between the manipulated variables and disturbances affecting the system, and this 
could introduce a bias in the estimates. Nevertheless, in view of its advantages, 
closed-loop identification is receiving more attention from process engineers and is 
being considered as an alternative which can be used for restoring controller 
performance when significant model-plant mismatch occurs.  
 
Among recent developments related to industrial applications, Zhu (1999) extended 
the asymptotic theory of Forssell and Ljung (1998) and developed practical 
guidelines for input signal design. In this approach, a high order ARX model  was 
identified to capture the deterministic and stochastic effects. This was followed by a 
filtering-based, model reduction technique to obtain a low order, high fidelity 
approximation of the deterministic dynamics. Vuthandam and Nikoloau (1997) 
proposed an MPC relevant identification methodology, which explicitly incorporated 
the input excitation requirements in the objective function of the MPC. However, the 
bias introduced due to the correlation between disturbances and manipulated inputs 
has not been completely addressed in these papers.  
 
In this paper, we study the direct identification method and the indirect, two-step 
method, for closed-loop identification, focussing on the issues of signal-to-noise ratio 
(SNR), disturbance-input correlation, and order reduction in the presence of noise. 
We propose a modification of the conventional SNR definition so that it reflects both 
input as well as output variability, and seek to maximize this index. We study the 



issue of input signal design with the objective of introducing variability in the closed 
loop data. We approach this problem as a trade-off, between balancing operating 
goals and introducing enough excitation to facilitate model identification. To minimize 
bias in the identified model which is caused by noise-input correlation, we analyze 
the applicability of the projection method (Forsell and Ljung, 1999) in the MPC 
scenario. Forsell and Ljung (1999) proposed a modified, two-step method for closed 
loop identification, wherein a non-causal structure for the sensitivity is used. We 
show that such a non-causal structure can be theoretically realized in an MPC 
framework, and can provide the benefit of minimizing the bias. In addition, we 
propose and discuss an alternate method of breaking the noise-input correlation by 
exploiting the nature of the MPC regulator. A few MPC regulators classify outputs to 
be restrained within zones/ ranges instead of trying to regulate them at desired 
values. We propose the use of a dynamic, active constraint set based strategy in the 
MPC optimization problem, which can be coupled  with the above range-control 
formulation. This yields a time-varying controller, which minimizes the input-noise 
correlation while accommodating some of the closed loop objectives, and results in 
better quality models. 
 
We analyze these algorithms by applying them on a simulation case-study, the 
benchmark Shell Control Problem (Prett and Morari, 1987). We will present results 
from the case-study which demonstrate the practicality of closed-loop identification 
techniques for model maintenance in advanced process control.  
 
 
Case study  
In the proposed case study, the Shell Control problem is used as a test bed for 
verifying these ideas. The Shell standard control problem was first published by the 
company in 1986 in the 1st Shell Process Control Workshop, with the intention to 
provide a standard and realistic test bed for the evaluation of new control theories 
and technologies. It captures most of the relevant control issues while staying as 
realistic as possible. The full model of the process is as follows. The model of the 
heavy oil fractionator process is a transfer function matrix whose (i, j) element 
relates the ith process output with the jth process input and has the standard first-
order dead time form. The model gains, time constants and time delays are shown in 
the following table: 

 
 
 



Process Model 

Parameters 
Top Draw (u1) Side Draw (u2) 

Bott. Reflux 

Duty (u3) 

Inter. Reflux 

Duty (d1) 

Upper Reflux 

Duty (d2) 

τ, θ in min K τ θ K τ θ K τ θ K τ θ K τ θ 
Top End 

Point (y1) 
4.05 50 27 1.77 60 28 5.88 50 27 1.20 45 27 1.44 40 27 

Side End 

Point (y2) 
5.39 50 18 5.72 60 14 6.90 40 15 1.52 25 15 1.83 20 15 

Top Temp 

(y3) 
3.66 9 2 1.65 30 20 5.53 40 2 1.16 11 0 1.27 6 0 

Upper Reflux 

Temp (y4) 
5.92 12 11 2.54 27 12 8.10 20 2 1.73 5 0 1.79 19 0 

Side Draw 

Temp (y5) 
4.13 8 5 2.38 19 7 6.23 10 2 1.31 2 0 1.26 22 0 

Inter. Reflux 

Temp (y6) 
4.06 13 8 4.18 33 4 6.53 9 1 1.19 19 0 1.17 24 0 

Bottoms 

Reflux Temp 

(y7) 

4.38 33 20 4.42 44 22 7.20 19 0 1.14 27 0 1.26 32 0 

  
Table 1. Model parameters of the Shell Control Problem 

 
The process is a multivariable heavy oil fractionator (5 inputs and 7 outputs) which is 
highly constrained, with very strong interactions and large dead times. The key 
elements of the Shell standard control problem are shown in Figure 1 & 2 below. 

 
Figure 1. Shell standard control problem 
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Figure 2. Shell Heavy Oil Fractionator Column 

The problem is stated such that an infinite number of scenarios can occur in 
controlling the unit. The process input/output relations are linearly modeled using a 
transfer function matrix of first-order dead time transfer functions. Inputs u1, u2, 
and u3 can be used as manipulated variables to control the process, but are subject 
to saturation (±0.5) and rate limit (±0.05 per minute) hard constraints, thus making 
the process non-linear. Inputs d1 and d2 are unmeasured disturbances, with | d1 | ≤ 
0.5 and | d2 | ≤ 0.5, entering the process. Furthermore, the process is subject to 
large uncertainties in the gains of the model transfer functions. The main objective is 
to maintain outputs y1 and y2 at specification (0.0 ±0.005 in the steady state) while 
at the same time, input u3 has to be minimized, and output y7 has to be kept to 
values of at least –0.5. Unmeasured disturbances d1 and d2 have to be rejected 
even when the sensors of y1 and y2 fail. The closed-loop speed of response must be 
kept between 0.8 and 1.25 of the open-loop process bandwidth and the fastest 
sampling time that can be used is 1 minute. The problem features are summarized 
below. 
• Actuator and output constraints are present. 
• Simultaneous regulation and optimization are required. 
• Strong interactions and large dead times are present. 
• Unmeasured disturbances are present. 
• Large uncertainties in the gains of the plant are present. 
 
Open loop identification 
In the initial phase of MPC installation, the plant models are identified using following 
steps 
Pre tests for getting initial information about the process gains, time constants and 
order of non-linearity of the process 
Design of the ‘RBS’  signal based on the settling time and the SNR (signal to noise 
ratio) consideration. The RBS signals can be applied to either one MV at a time or 
simultaneously to all MVs. 
The step data for the process is shown in Figures 3 and the RBS responses of input, 
output are shown in Figure 4(a), 4(b) respectively. 



The actual and identified process models are compared in Figure 5. 

 
Figure 3 : Step data for top draw perturbation 

 
Figure 4 (a): Input Perturbations 

 



 
 

Figure 4 (b): Output Perturbations 
 
 Top  

Draw Rate 
Side 

Draw Rate 
Bottoms  

Reflux Duty 
Top End Point 4.18 4.3 4.18 
Side End Point 3.19 3.3 3.19 

Bottoms 
Temperature 

4.15 4.29 4.15 

Table 2: SNR with respect to the inputs 
 
 
 

 SNR 
Top End Point 86 
Side End Point 121 

Bottoms 
Temperature 

198 

Table 3: SNR with respect to the outputs 



 
Figure 5: Identified models and the actual process models 

 
Tuning and performance of MPC and RMPCT 
MPC and RMPCT algorithms are developed based on these identified models. 
Performance ratio for each output is a tuning parameter in RMPCT. Performance ratio 
(PR) is the ratio of closed loop settling time to open loop settling time. Lower the PR, 
faster the control action and higher the PR, slower the control action.  
The tuning parameters are typically chosen based on the settling time of the process, 
the disturbance characteristics, the model fidelity etc. These parameters are chosen 
by thumb rules and are tabulated in Table 4. 
 
Performance of MPC and RMPCT 
The performance of MPC and RMPCT for set point tracking and disturbance rejection 
is done in terms of various metrics. The important metrics considered in this report 
are the settling times, the input energies, the output variability across the set point, 
IAE (Integrated absolute error), and ISE (Integrated square error), number of 
constraint hits.   
The settling time is related to the speed of control and ideally it should be as 
minimum as possible. The settling time of the response depends on the process 
settling time and the dead times. The IAE and ISE are given by following formulae 1 
and 2 respectively and decide the variability of the outputs across the set points.  
Smaller IAE and ISE indicate better performance.  
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dtteIAE
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Controller
Parameters 

MPC RMPCT 
(PR=1) 

Model Horizon 60 60 
CV1 50 50 
CV2 50 40 

Prediction 
Horizon 

CV3 50 25 
MV1 8 8 
MV2 8 8 

Control 
Horizon 

MV3 8 8 
CV1 1 1 
CV2 1 1 

 
CV weights 

CV3 1 1 
MV1 0.1 0 
MV2 0.1 0 

 
MV weigths 

MV3 0.1 0 
CV1 0.5 - 
CV2 0.5 - 

 
Set points 

CV3 0.5 - 
CV1 - 0.55 
CV2 - 0.55 

 
Ranges 

(maximum) CV3 - 0.55 
CV1 - 0.45 
CV2 - 0.45 

Ranges 
(minimum) 

CV3 - 0.45 
MV1 ±0.5 ±0.5 
MV2 ±0.5 ±0.5 

 
Absolute MV 
constraints 

 
MV3 ±0.5 ±0.5 

MV1 ±0.05 ±0.05 
MV2 ±0.05 ±0.05 

MV rate 
constraints 
(maximum) MV3 ±0.05 ±0.05 

CV1 [10 10 10 10 
10] 

[10 10 10 10 
10] 

CV2 [10 10 10 10 
10] 

[10 10 10 5 5]

 
Set point 
Blocking 

CV3 [10 10 10 10 
10] 

[5 5 5 5 5] 

MV1 [2 2 2 2] [2 2 2 2] 
MV2 [2 2 2 2] [2 2 2 2] 

 
MV Blocking 

MV3 [2 2 2 2] [2 2 2 2] 
CV1 - 1 
CV2 - 1 

Performance 
Ratio (PR) 

CV3 - 1 
Table 4: The parameter values used in MPC, RMPCT  
 
 
 
 



The input energies indicate the control efforts for achieving the control objective and 
are measured in terms of variance of the MVs. Ideally, these should also be as small 
as possible. 
 
The frequency of the input and input rate constraints hits is also considered as an 
important metric for performance monitoring. If the controller remains constrained 
for large time, then the optimal controller performance can not be ensured. The ideal 
situation would be no constraints hits throughout the online time.  
 
An important focus of this case study is to compare the performance of MPC, RMPCT 
when there is no mismatch. Later performance of RMPCT without mismatch and with 
mismatch is studied. This model plant mismatch arise from the shift in operating 
point, scaling of heat exchangers, replacement of equipments etc. To simulate the 
model plant mismatch, the models (used for prediction) are chosen 50% off gain 
from the plant dynamics. The controller performance is compared with the earlier 
case. The clear cut degradation in performance is indicated through higher IAE, ISE, 
and higher settling times. 
 
In figure 6, the performance of RMPCT (left) and MPC (right) in tracking the set 
point, and rejecting the disturbance is depicted. The quantitative performance 
measures such as IAE, ISE, settling times for set point tracking and disturbance 
rejections are tabulated in Table 5. In addition the input, output variances are 
tabulated in Table 6. From this figure it is evident that the input movements in 
RMPCT are minimal to that of MPC. The error propagation in RMPCT is less compared 
to that of MPC as the input movement is minimal in RMPCT. Thus RMPCT is more 
robust than MPC.  
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Figure 6: Comparison of performance for RMPCT and MPC controller 



Note: Disturbance is introduced at time t = 150 min. 

 
Table 5: Comparison of MPC and RMPCT (PR=1) performances in set point tracking 

and disturbance rejection 
 

 
 
 
 
 
 
 

 
Table 6: 

Variances in outputs and inputs with MPC, RMPCT during set point tracking 
and disturbance rejection 

From the earlier discussion it is understood that RMPCT is more robust and sluggish 
than MPC. If the operator has confidence in the models used in controller, the 
performance ratios for each of output can be reduced to make the controller 
aggressive 
 
In figure 7, the performance of RMPCT with mismatch and no mismatch are shown. 
In these simulations 50% mismatch in the gains for each input and output model are 
considered. The transient response of RMPCT is very sluggish in the presence of 
mismatch. The quantitative performance measures such as IAE, ISE, settling times 
for set point tracking and disturbance rejections are tabulated in Table 7. The input, 
output variances are tabulated in Table 8. So the step disturbance is introduced at 
t=350 min in mismatch case, rather than at t=150 min. From the figure and Table 7 
& 8, there is significant degradation in the performance of RMPCT. 
 
As discussed, the model plant mismatch degrades the controller performance. This 
degradation in controller performance motivates to go for re-identifying the models 
to sustain the benefits of using advanced process control. As mentioned in the 
introduction closed loop identification is preferred.  
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Variance 

 
Output 
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CV1 CV2 CV3 MV1 MV2 MV3 

MPC 0.0172 0.011
5 

0.002
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RMPCT  0.02 0.184 0.005
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0.0030 0.0015 0.0016 



 
Closed loop re-identification 
The important steps in closed loop identification are 
1)Signal design 
2)Model structure selection 
3)Identification algorithm  
4)Model validation 
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Figure 7: Comparison of performance for RMPCT controller without and with gain 

mismatch 
Note: Disturbance is introduced at time t = 150 min for first row (no mismatch) and 
at time t = 350 min for RMPCT with 50% gain mismatch (Bold). The time at which 
the disturbances are entered is shown in the brackets in the 3rd column.   
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Table 7. Comparison of RMPCT performance without mismatch and with mismatch, 
while tracking set point and rejecting disturbance 

 
 
 

Table 8. Variances in outputs and inputs with RMPCT (PR = 1), RMPCT with 50 % 
gain mismatch in models during set point tracking and disturbance rejection. 

 
 
Signal Design 
The external test signals can be added either at set points or at MVs. The amplitude 
and frequency spectrum of the signals can be computed based on the already 
existing models in APC. In this case study the set point excitations are used as they 
are easy to integrate with RMPCT product.  
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Figure 11: Set-point excitations 

 
 Top  

Draw Rate 
Side 

Draw Rate 
Bottoms  

Reflux Duty 
Top End Point 62 21 24 
Side End Point 47 16 19 

Bottoms 
Temperature 

67 23 26 

Table 7: SNR with respect to the inputs 
 

 SNR 
Top End Point 8.6 
Side End Point 14.2 

Bottoms Temperature 184 
 

Table 8: SNR with respect to the outputs 
 

 
Figure 12: Input excitations 

 



 
Figure 13: Output excitations 

 
Model structure selection 
The RMPCT already have an identifier which uses FIR models. OE models (which are 
parametric form of FIR models) can easily be integrated with the RMPCT. Hence, in 
the proposed case study, OE kind of models is used. 
Identification method 
In the proposed case study, the identification method employed can be stated as 
1)Fit high order ARX model  (model order ranging between 30-40) 
2)Frequency weighted model order reduction  
3)Iterative calculation of OE models of lower orders via high order ARX models   
Model validation 
Model validation is done based on comparison of the step responses of the actual 
process models with the identified models 



 
Figure 14: Comparison of the models 

 
Performance using the identified closed loop models 
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Performance of RMPCT before and after re-identification 
 

 IAE ISE 

Top end point 20.4 7.1 
Side end point 23.8 5.6 
Bottoms end point 7.11 1.23 

 
Table 9: Integrated absolute and squared error 

 
 

 Input energy 

Top draw rate 0.0032 
Side draw rate 0.0017 
Bottoms reflux 
duty 

0.0015 

Table 10: Input energy  
 
Conclusions   
Effective Model maintenance is a need for sustained benefits of APC projects. The 
model plant mismatch that widens with time needs to be corrected by reidentifying 
the process models. Closed loop identification is an effective way for reidentification.  
In the reported case study, the clear cut improvement in performance (reduced 
variation in the outputs and the faster settling times) provides motivation for the 
model maintenance. Some future directions are: Performing the closed identification 
on a realistic test bed with higher dimensionality, techno-economic evaluation for 
closed loop identification (ROI analysis) and signal design issues.  
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