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 With the development of modern experimental and analytical technology, it 
is increasingly common to encounter high dimensional data sets. These data 
sets may contain large number of variables or samples or both. Traditional 
modeling methods usually rely on simplifying assumptions of Gaussian noise 
and prior, and may fail to make the best use of the available data. Meanwhile, 
since experimenters often have some knowledge about the data set and a 
likely model, it will be extremely helpful if we can make use of these 
information in modeling. Bayesian statistics provides a rigorous way to 
combine the prior information and the likelihood of data. By using Bayes rule, 
we can get the posterior distribution from prior distribution and likelihood of 
data. The posterior distribution contains all the information available, thus, the 
model based on the posterior distribution would capture all the available 
knowledge and is expected to be better than the model get from traditional 
methods. This makes Bayesian modeling method a natural choice for 
modeling complex high dimensional data sets. 

 A Bayesian modeling method called Bayesian Latent Variable Regression 
(BLVR)(Nounou et al, 2002) has already been available for some time. It is a 
linear regression method which can incorporate the prior information, deal with 
measurement noise in both input variables and output variables, and handle 
collinearity of input variables. It assumes Gaussian measurement noise for 
observations and Gaussian prior distribution for observations and model 
parameters. This method is optimization based. It gets the Maximum A 
Posteriori (MAP) estimate by optimization routines, i.e., the estimate is the 
mode of the posterior distribution. This method is most suitable when the 
dimension of the data set is not very large. When the dimension is large, to 
solve such a constrained optimization problem with lots of parameters is 
extremely computationally expensive. As is well known, solving this kind of 
optimization problem is also problematic because of local minima and 
convergence issues. Furthermore, since the optimization based BLVR only 
provides the point estimate, we will lose other information from the posterior 
distribution, which makes it difficult to provide the confidence interval of our 
estimate. 

 To avoid the above problems of optimization, and make BLVR applicable 
for complex high dimensional data set, a sampling based approach was 
developed and will be described in this presentation. Instead of solving 



optimization problem, this approach uses Monte Carlo approximation to obtain 
estimates from the sampled posterior distribution. This method uses Markov 
Chain Monte Carlo (MCMC) (Gamerman, 1997) to draw samples of 
parameters from the posterior distribution. MCMC is well known in Bayesian 
statistics community and widely used for Bayesian computing. However, 
existing methods have not focused on latent variable regression methods , 
which are popular for modeling of process and chemometric data. As long as 
we know the posterior distribution or the posterior density up to a constant, we 
can use MCMC to draw samples of this posterior distribution. There are two 
types of MCMC, Metropolis-Hastings sampling and Gibbs sampling. Gibbs 
sampling is very useful for high dimensional distribution because it draws 
samples of each dimension of the parameter vector in sequence. Hence, we 
use Gibbs sampler in our method. Based on these samples, we obtain the 
approximate posterior mean, mode and other statistics. This sampling based 
method is relatively computationally inexpensive and the results are more 
reliable than the optimization based BLVR. Also it is very easy to provide 
confidence interval of the estimate and other moments. In principle, this 
sampling based BLVR can handle any kind of distribution for likelihood and 
prior, yet the Gaussian assumption could greatly reduce the computation load. 
Hence, two programs of this sampling based BLVR were developed. One still 
assumes Gaussian likelihood and prior, since this is often reasonable in many 
situations and it runs more efficiently. The second approach to be developed in 
our work does not make any assumptions about Gaussian distributions, and 
uses Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et al, 1995) 
method to facilitate the Gibbs sampling. 

 The complex high dimensional chemical and biological data sets often 
encountered in high throughput screening applications consists of both 
continuous and discrete variables. The discrete variables may represent some 
category and could be without measurement noise. This violates the Gaussian 
measurement noise assumption made in BLVR, hence, a procedure is 
developed to separately deal with continuous and discrete variables in 
Bayesian modeling. 

 This sampling based BLVR method has been applied to both simulated 
data set and industrial data set. Table 1 shows the results of a simulated 
example where there are 15 input variables and the true rank is 10, both the 
input and output variables are contaminated by measurement noises, the 
signal to noise ratio is 3. The results for the optimization based BLVR are 
based on 15 realizations and other results are based on 100 realizations. 
Other applications include system identification of an industrial distillation 
column and high throughput screening, which will be described in the 
presentation. 

 



 

 

 

Table 1. Results for Simulated High Dimensional Data Set 

Y(training) Y(testing) X(training) X(testing) CPU TIME (s) MSE 
Mean Std Mean Std Mean Std Mean Std Mean Std 

PCR 253.19 23.294 281.24 29.302 3.1897 0.11187 3.1679 0.11667 0.0171 0.0046
PLS 242.19 22.17 280.17 31.429 4.5003 0.17886 4.553 0.21065 0.0089 0.0031
BLVR-opt(u) 190.68 28.069 353.23 70.397 2.997 0.12417 2.9136 0.10151 194.37 16.962
BLVR-opt(h) 172.52 52.774 284.5 123.21 2.772 1.1854 2.7017 0.87297 1999.8 187.99
BLVR-mcmc(u) 161.74 14.193 269.58 28.178 3.0986 0.11251 3.0104 0.11796 16.172 0.07238
BLVR-mcmc(h) 148 14.137 247.36 28.564 2.3404 0.08291 2.4304 0.09328 131.04 0.65587
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