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Abstract

A novel methodology that integrates a directional multisine input design procedure and control-
relevant parameter estimation is developed in this paper, leading to desirable models for the control
of highly interactive multivariable process systems.A priori information on system directionality is
utilized in the input design procedure and recognized in thesubsequent parameter estimation step,
which consists of control-relevant curvefitting of frequency responses obtained from identification data.
With input-output data based on a directionally adjusted input signal, the control-relevant parameter
can accurately estimate the dynamic singular values of a system. As a result, a systematic procedure
for generating a control-relevant model with balanced gaindirectionality is developed, appropriate for
highly interactive processes. A case study involving a binary distillation column and Model Predictive
Control is presented in this paper to demonstrate the effectiveness of the proposed approach.

1 Introduction

Effective system identification of highly interactive processes for multivariable control purposes has been
viewed as a challenging problem by many investigators (Andersen and Kümmel, 1992; Chien and Ogun-
naike, 1992; Jacobsen and Skogestad, 1994; Koung and MacGregor, 1993; Li and Lee, 1996). Such
systems respond largely in the high gain direction by virtueof strong interaction, which makes it non-
trivial to precisely capture low gain directionality in thedata (Andersen and Kümmel, 1992; Morari and
Zafiriou, 1988; Varga and Jørgensen, 1994; Zhu, 2001; Chouet al., 2000). Conventional multivariable
input signal designs are usually inadequate for estimatingaccurate gain directionality, particularly under
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noisy conditions (Koung and MacGregor, 1993; Koung and MacGregor, 1994; Jacobsen, 1994). There-
fore, multivariable identification techniques that can address strong ill-conditioning and interaction are
valuable for advanced control applications.

With this challenge in mind, we consider the problem of developing an input design procedure that
takes advantage ofa priori knowledge of gain directionality to obtain an informative input signal, and
examine the effective use of data generated from this signalin the subsequent step of control-relevant
parameter estimation. The resulting model serves as a useful nominal model for a high performance
advanced control system, such as Model Predictive Control.

Recently, a multisine signal design with modified zippered spectrum meaningful for highly interactive
systems was proposed by the authors (Leeet al., 2003b). In this paper, the design procedure is extended
to systematically enable the user to emphasize any particular direction of interest with a desirable level of
power; in most cases, the user-specified direction will correspond to the weak gain direction. Constrained
optimization techniques can be further applied to these signals to enable plant-friendly implementation
(Leeet al., 2003b; Leeet al., 2003a).

In the control-relevant parameter estimation step, directionality is systematically considered through
the specification of weights which emphasize control performance requirements; these weights are con-
sistent with preserving the low gain output direction whichis demanded by high performance advanced
control systems (de Callafonet al., 1996; Bayard, 1994; Gaikwad and Rivera, 1997; Lee and Rivera, 2005).
Curvefitting of frequency responses obtained from input-output data to discrete-time models correspond-
ing to a Matrix Fraction Description (MFD) model representation (de Callafonet al., 1996) is accom-
plished using a computationally fast numerical procedure that recognizes the presence of orthogonal (“zip-
pered”) frequency grids (Lee and Rivera, 2005).

The principal purpose of this work is to present a comprehensive procedure involving directional mul-
tisine input design with control-relevant curvefitting, meaningful to the control of demanding multivariable
systems, such as highly interactive processes. The analysis of the paper is demonstrated using a case study
based on the high-purity distillation column by Jacobsen and Skogestad (1994) that illustrates the effec-
tiveness of this integrated methodology. This paper is organized as follows: Section 2 introduces a brief
overview of multisine input signals. Section 3 describes a design procedure for directional multisine input
signals, suitable for estimating highly interactive systems. Section 4 summarizes the control-relevant pa-
rameter estimation problem. Section 5 describes the distillation column case study and Section 6 presents
Summary and Conclusions.

2 Multisine Input Signal Designs

Multisine signals are deterministic, periodic signals whose power spectrum can be directly specified by
the user (Guillaumeet al., 1991; Schroeder, 1970). A multisine inputx j(k) for the j-th channel of a
multivariable system withm inputs can be defined as,

x j(k) =
mδ

∑
i=1

δ̂ ji cos(ωikT +φ δ
ji )+

m(δ+ns)

∑
i=mδ+1

α ji cos(ωikT +φ ji )

+
m(δ+ns+na)

∑
i=m(δ+ns)+1

â ji cos(ωikT +φa
ji ), j = 1, . . . ,m (1)



whereT is sampling time,Ns is the sequence length,m is the number of channels,δ , ns, na are the number
of sinusoids per channel (m(δ + ns + na) = Ns/2), φ δ

ji ,φ ji ,φa
ji are the phase angles,α ji represents the

Fourier coefficients defined by the user,δ̂ ji , â ji are the “snow effect” Fourier coefficients (Guillaumeet
al., 1991), andωi = 2π i/NsT is the frequency grid. Here, users should provide Fourier coefficients in
terms of an input power spectrum and phases for the multisineinputs that determine the properties of
input signals.

In designing an input signal, the primary frequency band of interest for excitation is determined by the
dominant time constants of the system to be identified and thedesired closed-loop speed-of-response,

ω∗ =
1

βsτH
dom

≤ ω ≤ ω∗ =
αs

τL
dom

(2)

αs andβs that specify the high and low frequency ranges of interest inthe signal, respectively for a given
range of low and high dominant time constants (defined byτL

dom andτH
dom). The bandwidth per (2) is

bounded by the following inequality based on the choice of design parameters,

2πm(1+δ )

NsT
≤ ω∗ ≤ ω ≤ ω∗ ≤ 2πm(ns+δ )

NsT
≤ π

T
(3)

which in turn translates into the following inequalities for number of sinusoids, sampling time, and se-
quence length (ns, T, andNs, respectively):

(1+δ )
ω∗

ω∗
≤ ns+δ ≤ Ns

2m
(4)

T ≤ min

(
π

ω∗ ,
π

ω∗−ω∗
(
ns−1
ns+δ

)

)

(5)

max

(

2m(ns+δ ),
2πm(1+δ )

ω∗T

)

≤ Ns ≤ 2πm(ns+δ )

ω∗T
(6)

For more details on guidelines for choosing parameter variables in the input design the reader is referred
to (Leeet al., 2003b).

2.1 Zippered Multisine Input Signals

A “zippered” power spectrum uses orthogonal frequency grids for each input channel that makes a signal
length longer than that of a shifted signal design (see Figure 1). A zippered power spectrum gives indepen-
dence between channels and provide greater flexibility to the design interface, i.e., the Fourier coefficients
and phases of each input can be determined independently (Lee et al., 2003b). To achieve a zippered
spectrum we define the Fourier coefficientsα ji as:

α ji =

{
6= 0, i = mδ + j,m(δ +1)+ j, ..., m(δ +ns−1)+ j
= 0, for all otheri up tom(δ +ns)

(7)

Theoretical system requirements such as persistence of excitation, harmonic suppression (a key consid-
eration in the identification of nonlinear systems), and control-relevance can be satisfied without loss of
generality through the specification of Fourier coefficients.



Figure 1: Conceptual design of a standard zippered power spectrum for 3-channel signal

2.2 Modified Zippered Multisine Signals

Stec and Zhu (2001) utilize sequential cycles of high-magnitude correlated and low-magnitude uncor-
related signals that promotes balanced directional content in the data. Their philosophy is adopted in
our design procedure to define amodifiedzippered spectrum for a multisine input design, suitable for
identifying highly interactive systems. A conceptual representation of the modified zippered spectrum is
illustrated in Figure 2.

Figure 2: Conceptual design of a modified zippered power spectrum for 2-channel signal

To achieve the above modified zippered input power spectrum (Figure 2) we define the Fourier coefficients
α ji as:



α ji =







6= 0, i = (m+1)δ + j,(m+1)(δ +1)+ j, ..., (m+1)(δ +n′s−1)+ j (uncorrelated)
6= 0, i = (m+1)(δ +1),(m+1)(δ +2), ..., (m+1)(δ +n′s) (correlated)
= 0, for all otheri up to(m+1)(δ +n′s)

(8)

For efficient gain-directional estimation, the amplitudesγ(ωi) and phases of the correlated harmonics need
to be scaled and adjusted based ona priori knowledge of a system to be identified. This is explained in
the ensuing sections.

3 Directional Multisine Input Design

Koung and MacGregor (1993) take advantage of knowledge of the condition number to increase the in-
formation contents of the low gain direction, comparable tothat of the high gain direction. Similarly,
the correlated multisine harmonics in a modified zippered spectrum can be designed to be collinear in a
user-specified direction, usually the low gain direction, with a corresponding amplitude adjustment in the
frequency domain.

In general, an×mgain matrix (K) is represented in a Singular Value Decomposition (SVD) as follows:

SVD(K) = U Σ VH

U = [u1, u2, ...un] VH = [v1, v2, ...vm]

whereΣ contains a diagonal nonnegative definite matrixΣ1 of singular values arranged in descending
order as in

Σ =

(
Σ1
0

)

, n≥ m (9)

Σ = (Σ1 0), n≤ m (10)

and
Σ1 = diag{σ1,σ2, ...,σk}, k = min{m,n} (11)

whereσ̄ = σ1 ≥ σ2 ≥ ...≥ σk = σ (Morari and Zafiriou, 1988). The output (U ) and input (VH) directional
vectors are unitary and orthogonal, i.e.,[vk]× [v j ] = 0 for k 6= j. If an input signal sequence[x] is collinear
to the jth input directional vector inVH such that[x] = α[v j ]

T , α > 0, then,[v j ]× [x] becomes

[v j ]× [x] = [v j ]×α[v j ]
T = α(

m

∑
i=1

vi j vi j ) = α (12)

This enables the direction and power amplitude adjustmentsusing correlated harmonics in the multisine
signal.



3.1 Directional Adjustment of Multisine Inputs

A multisine input signal in the time-domain is transformed into the frequency-domain, consisting of a
series of power amplitudes and phases. A multisine equationgiven as

x(k) =
ns

∑
i=1

αi cos(ωikT +φi) (13)

can be transformed into at a specific frequencyωi :

X(ωi) = α̃ie
− j φ̃i (14)

whereX(ωi) = FFT([x]), α̃i=
√

2αi Ns, φ̃i=ωiT + φi. A multisine signal for multiple channels becomes
such that

X(ωi) =








α̃1iej φ̃1i

α̃2iej φ̃2i

...
α̃miej φ̃mi








(15)

Furthermore, the above multisine input also represents thecorrelated harmonics in a modified zippered
spectrum where the amplitude and phases are identical. The correlated harmonicsXc(ωi) are

Xc(ωi) =








α̃iej φ̃i

α̃iej φ̃i

...
α̃iej φ̃i








(16)

and they are taken into the consideration of direction adjustment.

To achieve the directional signal design,α̃i and φ̃i of the correlated harmonics should be adjusted
based on a selected input direction vector [v j ]. Since a input direction vector can be transformed into the
spherical coordinate, the amplitudes and phases of the selected direction vector is obtained as

v j
T =






v j1
...

v jm




 =






α j1 ejφ j1

...
α jm ejφ jm




 (17)

For the first channel, the phasesφ̃i may be selected only by satisfying a plant-friendly criterion such as the
crest factor of signal. As a result, the adjusted correlatedX′

c(ωi) is formulated such that

X′
c(ωi) = v∗j ⊗Xc(ωi) =






α j1α̃iej(φ̃i+0)

...
α jmα̃iej(φ̃i+∆φ jm)




 , ∆φmi =






−φ j1 + φ j1 = 0
...

−φ jm + φ j1




 (18)



wherev∗j = con j(v j) and⊗ is theShur product and∆φ ji indicates the whole correlated harmonics are
rotated byejφ j1. The proof of directional adjustment is verified by a simple test by

v∗j ×X′
c(ωi) =






α j1 ejφ j1

...
α jm ejφ jm






T

×






α j1 α̃i ej(φ̃i − φ j1+φ j1)

...
α jm α̃i ej(φ̃i − φ jm+φ jm)






=
[

α2
j1ej(φ j1−φ j1) + · · ·+α2

jmej(φ jm−φ jm)
]

× α̃ie
j φ̃i ejφ j1

= 1 × α̃ie
j φ̃i ejφ j1 (19)

whereα2
ji + · · ·+α2

jm = 1. Therefore,v∗j ×X′
c(ωi) 6= 0, α̃i > 0. This directional adjustment is now utilized

for selecting the low gain input direction (vm) (or any other gain direction of user’s interest).

3.2 Amplitude Adjustment for Correlated Harmonics

If the input signal[x1 · · ·xm]T is designed to be collinear to one input directional vector [v j ], only its
corresponding output direction [u j ] is manifested through the system such that

Y(ωi) =






u1 j
...

um j




 σ j [v1 j · · ·vm j]






x1
...

xm




 (ωi) (20)

Having designed how to adjust the input signal for any systeminput direction, we focus on the low or
weak gain direction whose information contents we wish to increase in the output. If the input signal
sequence is also collinear or close to the high gain direction (or not collinear to the low gain direction, the
high gain direction (e.g.,j = 1) is naturally dominant in the response because of the maximum singular
value (Morari and Zafiriou, 1988).

The response in the low gain direction is relatively very small; therefore, the modified zippered spec-
trum is proposed to overcome this output gain deficiency by properly scaling the amplitudes of the corre-
lated harmonics. This adjustment can be accomplished by applying a higherκ for the low gain directional
responses such that

∥
∥
∥
∥
∥
∥
∥

u11σ1
...

um1σ1

∥
∥
∥
∥
∥
∥
∥

2

by uncorrelated harmonics≈ κ

∥
∥
∥
∥
∥
∥
∥

u1mσm
...

ummσm

∥
∥
∥
∥
∥
∥
∥

2

by correlated harmonics (21)

where the inputs are collinear to an input directional vector; x = [v j ]
T , j = 1 for the high gain direction

using uncorrelated harmonics andj = m for the low gain direction using correlated harmonics. The scaling
factorκ for channels is bounded by

min
i=1...m

{
∥
∥
∥
∥

ui1σ1

uimσm

∥
∥
∥
∥

2
(ωi)} ≤ κ(ωi) ≤ max

i=1...m
{
∥
∥
∥
∥

ui1σ1

uimσm

∥
∥
∥
∥

2
(ωi)} (22)

Sinceκ includes a contribution for all inputs, it should be distributed overm number of input channels
such that



γ (ωi) =
κ (ωi)

m
(23)

As a result, the correlated multisine harmonics with directional and power adjustments for promoting
a selected gain direction is obtained by the following multisine input signal

X′
c(ωi) = γ(ωi)






α j1(ωi) α̃(ωi) expj(φ̃i + ∆φ j1,i)

...
α jm(ωi) α̃(ωi) expj(φ̃i + ∆φ jm,i)




 (24)

Moreover, the quality of output distribution should be alsogeometrically monitored for the balanced gain
directional information content in the state-space.

4 Control-Relevant Curvefitting for Plant-Friendly System Identifi-
cation

4.1 Control-Relevant Parameter Estimation

A key feature of control-relevant parameter estimation is that it emphasizes closed-loop control perfor-
mance requirements during the estimation procedure. The goal is to obtain a MFD model̃P representing
a systemP that is best suited for the end use of model, which is control system design. To this end, the
work of Gaikwad and Rivera (1997) established that such a parameter estimation problem can be cast as
a pre- and post-weighted 2-norm minimization using the linear fractional transformation (LFT) (Figure 3)
such that

Figure 3: Linear fractional transform of closed-loop feedback system

min
E

‖WyS̃EmH̃(r −d)‖2
2 (25)

subject to the condition that

sup
ω

ρ(EmH̃) < 1, −π ≤ ω ≤ π (26)



where the pre- and post-weights are functions of the closed-loop transfer functions as̃S= (I + P̃C)−1,
H̃ = P̃C(I + P̃C)−1 andEm = (P− P̃)P̃−1. ρ(EmH̃) arises from the Small Gain Theorem and can be used
as a sufficient condition for nominal stability (Gaikwad andRivera, 1997).

If zippered multisine signals are applied for simultaneously exciting all the input channels, a permu-
tation matrix,Tm, should be applied to ensure only the relevant frequencies are captured in parameter
estimation. The model estimation error that is then formulated as

Ẽ(ωi) = (G(ωi)−θΦ(ωi))Tm(ωi) (27)

whereTm is defined by

Tm(ωi) = diag(0, ... 1
︸︷︷︸

jth

... 0), Tm ∈ ℜm×m (28)

θ andΦ are given as

θ = [Bd ... Bd+b−1 A1 ... Aa] ∈ Rp×(mb+pa) (29)

Φ(ωi) =













Im×m ξ (ωi)
−d

...
Im×m ξ (ωi)

−(d+b−1)

G(ωi) ξ (ωi)
−1

...
G(ωi) ξ (ωi)

−a













(30)

whereξ (ωi) = jωi in a continuous time model, whereasξ (ωi) = ejωiT represents the shift operator in a
discrete-time model. In this paper, we utilize the left MFD parameterization for control-relevant parameter
estimation purposes, i.e.,P̃ is defined such that

P̃(ξ−1,θ) = A(ξ−1,θ)−1B(ξ−1,θ) (31)

A(ξ−1,θ) = Ip×p + ξ
a

∑
k=1

Akξ−k+1,Ak ∈ ℜp×p (32)

B(ξ−1,θ) =
d+b−1

∑
k=d

Bkξ−k, Bk ∈ Rp×m (33)

The parameter vectorθt is estimated from an iterative minimization of the following objective,

θt =argmin
θ∈ℜ

N

∑
k=1

‖W̃2(ωi ,θt−1)Ẽ(ωi ,θ)W1(ωi ,θt−1)‖2
2∆ωi (34)

whereW̃2(ωi ,θ) = −Wy(ωi) S̃(ωi ,θ)A(ωi ,θ)−1 andW1(ωi ,θ) = P̃−1(ωi ,θ) H̃(ωi ,θ)(r −d). ∆ωi repre-
sents the frequency interval for zippered or/and harmonic-suppressed input power spectra.



4.2 Control-Relevant Curvefitting Procedure

Figure 4: Flowchart for Control-relevant Parameter Estimation Algorithm

A consistent estimate of the frequency response is obtainedfrom the observed input and output data
via an Empirical Transfer Function Estimate (ETFE). Alternatively, frequency responses can be obtained
through high-order ARX models and Spectral Analysis (SA). Then, frequency responses are approximated
into parametric, multivariable systems using a discrete-time Matrix Fraction Description (MFD) model
(de Callafonet al., 1996).

The weighting functions are obtained by utilizing unconstrained Model Predictive Control (MPC);



particularly, an output gain direction is considered as theinput change in (25), i.e.,r is collinear to an
output direction vector[u j ] that is corresponding to[v j ] in the input design. The unweighted MFD model
provides an initial model for the control-relevant weighting, and the overall procedure is implemented in a
numerical algorithm as Figure 4. The detailed implementation of the control-relevant parameter estimation
procedure is described in (Lee and Rivera, 2005).

5 High-Purity Distillation Column Case Study

The integrated methodology described in this paper is demonstrated in a case study of a linear distillation
column (Jacobsen and Skogestad, 1994). The distillation has L/V configuration and operating variables of
yD = 0.99 andxB = 0.01. Since this process is of the 41st-order, model order reduction is desirable. The
datasets based on the two input signals (zippered and modified zippered spectra) are compared for their
usefulness on the distillation process under noisy environments.

5.1 Open-Loop Test Experiments

From open-loop step responses, the dominant time constant range for this system can be estimated as
τL

dom=15 andτH
dom=194 min. Coupled with user choices ofδ=0, αs=1, andβs=1, these lead to accept-

able choices,ns=78, Ns=916, andT=8 min, for a series of identification testing signals that conform to
the guidelines in Sections 2 and 3 (see Figure 5). A directional multisine input is applied with a mod-
ified zippered spectrum asv2=[1 1] andγ=72 which is determined, based on apriori steady-state gain.
The modified zippered signal is designed to excite the low gain direction[1 1] as the state-space plot in
Figure 6. The correlated harmonics in the modified zippered signal cause a higher input magnitude.
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Figure 5: Input power spectral densities for Jacobsen-Skogestad distillation column: (a) a standard zip-
pered spectrum and (b) a modified zippered spectrum

The output state-space plot gives a clear contrast between the two multisine signal designs. Figure 6
(b, blue+) shows a thin spread in the [1 1] high gain output direction despite the input state-space has
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Figure 6: Input (a) and Output (b) state-space plots for the linear distillation column: standard zippered
spectrum (+:blue) and modified zippered spectrum (∗:red)

the small square-type distribution. By the directional design via the modified zippered spectrum, the input
state-space has a thin spread in [1 1] direction (Figure 6 (a), red ∗), though the resulting output state-
space, Figure 6 (b, red∗), has a diamond-shape spread. This indicates that the modified zippered spectrum
generates a balanced output distribution; as a consequence, it will produce a model estimate with the
improved gain directionality.

The correlated harmonics with the higher power level and directional adjustment comparatively pro-
mote the low gain to the high gain direction; therefore, the output span in the [1 -1] direction remains
similar in the [1 1] direction (Figure 6 (b), red *). To demonstrate the effectiveness under noisy envi-
ronments, white noise is added to the outputs of the tested data at [-1dB] SNR as shown in Figure 7 in
addition to estimating models from noise-free input-output data.

5.2 Control-Relevant Curvefitting

ETFE and SA are utilized to produce frequency responses fromthe datasets generated using the standard
and modified zippered spectrum signals, respectively. Since the standard zippered spectrum has orthogo-
nality from uncorrelated harmonics, unbiased estimates ofthe ETFE are naturally easy to compute. How-
ever, the ETFE cannot be estimated for the frequencies of a dataset from the modified zippered spectrum.
Instead, SA is used for the modified zippered spectrum signals so that the low gain information excited by
the correlated harmonics can be captured in the frequency responses. The weighting functions are defined
by the setpoint change ([0.1 -0.1]) and closed-loop transfer functions using unconstrained MPC with a
set of tuning parameter (PH=35, MH=10, Ywt=[1 1], and Uwt=[0.05 0.03]) for both noise-free and noisy
conditions.
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Figure 7: Time-domain sequences of the open-loop experiment for the linear distillation column: standard
zippered spectrum (left;CF(x)=[1.34, 1.34]) and modified zippered spectrum (right;CF(x)=[1.31, 1.31]),
solid (noise-free) and dotted (noisy)

5.2.1 Noise-Free Data Case

Figure 8 shows the curve-fittings of the weighted and unweighted models under noise-free conditions with
the simplest MFD order [na=1, nb=1, andnk=1]. Both the unweighted and weighted MFD models have
accurate fits to the frequency responses. Figure 9 showsρ(EmH) of the MFD models; under noise-free
condition, all the models except the unweighted model arised from the modified zippered signal have the
low values. Figure 10, however, indicates thatσmax andσmin are accurately estimated by all the models.
The weighted model from the modified zippered signal shows the most precise estimate ofσmax andσmin.
In closed-loop setpoint tracking tests with MPC, all the MFDmodels display the equivalent results with
efficient tracking performance (see Figure 11) since all themodels have sufficiently accurate estimates of
singular values.

5.2.2 Noisy Data Case

Figure 12 shows the curve-fittings of the weighted and unweighted models with the same MFD order
[na=1, nb=1, andnk=1] as the noise-free conditions. Figures 13 and 14 reveal a significant contrast in the
models. In particular, the control-relevant weighted model based on the data from the modified zippered
signal has lowestρ(EmH) (Figures 13) and a much closer estimate of theσmin than any other model
(Figure 14) while all the models closely estimateσmax. In closed-loop setpoint tracking tests with MPC,
the weighted model using the modified zippered input design is able to display the best result with fast and
stable tracking performance without offset (see Figure 15).
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Figure 8: Frequency-response curvefitting of data under noise-free conditions : (a) ETFEs by standard
zippered spectrum and (b) SA by modified zippered spectrum using Hamming Window(Wr = 256).
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Figure 9: Small Gain Theorem Analysis: ETFEs from a standardzippered spectrum (a) and SA from a
modified zippered spectrum (b) with parametric MFD [1 1 1] models under noise-free conditions.

6 Summary and Conclusions

In this paper, a novel integrated framework is presented formultivariable system identification and control
system design.A priori knowledge of a system is efficiently utilized for generatinginformative multisine
input signals and control-relevant parameter estimation.A modified zippered spectrum provides a pow-
erful tool that is able to adjust the directions and power amplitudes of sinusoidal harmonics, promoting
information content in the weak gain direction of a highly interactive system. A method for parametric
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Figure 10: Singular values of the true plant and estimated models under noise-free conditions : SA=
spectral analysis, CRMFD = weighted MFD model, and MFD = unweighted MFD model
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Figure 11: Setpoint MPC tracking tests with the MFD models under noise-free conditions for the linear
distillation column: r=[0.1 -0.1]

model estimation via frequency-weighted curvefitting is achieved by the use of the full-polynomial MFD
approach. The weighted curvefitter naturally capture the low gain direction resulting from the dataset
using a directional signal design.

We see from the case study that a combined approach involvingsignal design and model estimation is
superior to the conventional identification approaches forsystems characterized by strong process interac-
tion and ill-conditioning. The integrated methodology demonstrates its efficiency of estimating singular
values precisely with desirable gain directionality undernoise-free and noisy conditions. The future re-
search will consider the development of a comprehensive identification test monitoring procedure that is
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(b) Modified Zippered Case with SA

Figure 12: Frequency-response curvefitting of data under noisy conditions: (a) ETFEs by standard zip-
pered spectrum and (b) SA by modified zippered spectrum usingHamming Window(Wr = 256).
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Figure 13: Small Gain Theorem Analysis: ETFEs from a standard zippered spectrum (a) and SA from a
modified zippered spectrum (b) with parametric MFD [1 1 1] models under noisy conditions

able to improve the robustness, performance, and stabilityin a wide range of multivariable control system
applications.
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Figure 14: Singular values of the true plant and estimated models under noisy conditions : SA = spectral
analysis, CRMFD = weighted MFD model, and MFD = unweighted MFD model
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Figure 15: Setpoint MPC tracking tests with the MFD models under noisy conditions for the linear distil-
lation column: r=[0.1 -0.1]
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