
520a Simpca with Modified Instrumental Variable to Improve Estimation Accuracy 
Jin Wang and S. Joe Qin 
Based on projection techniques in Euclidean space, subspace identification methods (SIMs) have been 
one of the main streams of research in system identification (Gevers, 2003). Several representative 
algorithms have been published, including canonical variate analysis (CVA, Larimore, 1983; 1990), 
numerical algorithm of subspace state space system identification (N4SID, Van Overschee and De 
Moor, 1994) and multivariate output-error state space (MOESP, Verhaegen, 1994). The asymptotic 
properties of these subspace algorithms also have been investigated in the past decade and consistency 
conditions of the estimates have been identified (Deistler et al., 1995; Peternell et al., 1996; Jansson and 
Wahlberg, 1998; Bauer et al., 1999; Bauer and Jansson, 2000; Knudsen, 2001). The effect of weighting 
matrices and more explicit expressions for the asymptotic variance of the model estimates have been 
obtained recently (Bauer and Ljung, 2002; Gustafsson, 2002). 

SIMs have many advantages compared to prediction error method, such as its simplicity in 
parameterization, better numerical reliability and modest computational complexity. However, they also 
have certain drawbacks. One is that SIMs may give biased estimate for errors-in-variables; another is 
that many SIMs do not work on closed-loop data (Ljung and McKelvey, 1996; Forssell and Ljung, 
1999), even though the data satisfy identifiability conditions for prediction error methods.  

SIMPCA, known as subspace identification method via principal component analysis, is the method we 
recently developed to address these two aspects. While most existing subspace identification methods 
use the observable subspace to estimate the observability matrix, SIMPCA uses the null space or parity 
space that has been used in fault detection literature to extract the system information. SIMPCA makes 
use of PCA to extract the extended observability matrix Gamma_f and Toeplitz matrix H_f from input 
and output data, much similar to the total least squares in the sense that both input and output variables 
are included in the PCA decomposition, which naturally handles errors-in-variables situation. SIMPCA 
with a column weighting is also proposed (Wang and Qin, 2004) to improve the accuracy in the model 
estimates. 

In this work, we modified the instrumental variable and corresponding weighting applied in SIMPCA 
which can significantly improve the estimate accuracy of system, to be specific, the system zero 
estimation, especially in the errors-in-variables case. The modified instrumental variable also improves 
the system order estimation via AIC index. We give geometric interpretations of the difference between 
SIMPCA with modified instrumental variable and CVA. The performance of original SIMPCA, 
modified SIMPCA, MOESP and CVA are compared through a simulation example. 
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