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The current decade is marked by the increased need for integration and more realistic models coupled 
with heavy interdisciplinary research efforts. A lot of effort is going into “Modeling, Simulation and 
Optimization” of complex systems, and this has been recognized as one of the pillars of current day 
research on par with theoretical and experimental research. Modeling the behavior of many complex 
physical systems is carried out by using Ordinary Differential Equations (ODEs) and Partial Differential 
Equations (PDEs), which typically represent the conservation laws, coupled with algebraic equations, 
which represent constitutive relations or design specifications. Such models arise in myriad application 
areas such as biology, nano-scale processes/phenomena, medicine, energy (including fuel cell systems) 
and transport processes. With the development of powerful modeling and simulation tools for such 
systems, optimization is a natural extension to consider. 

Dynamic optimization aims at optimizing systems that are governed by differential equations, and the 
last decade has witnessed a tremendous amount of effort go into optimization of Differential-Algebraic 
Equations (DAEs), in particular: interesting applications, numerical algorithms and optimization 
platforms. From a mathematical viewpoint, dynamic optimization problems are optimal control 
problems which formally refer to the minimization of a cost (objective) function subject to constraints 
that represent the dynamics of the system. 

In order to cater to the scale and the complexity of current day applications, the following directions 
must be explored: design of powerful numerical methods, optimization of systems governed by PDEs, 
ability to handle discrete decisions, classification of problem classes that can be solved by various 
dynamic optimization methodologies, reliability of Nonlinear Programming (NLP) based methods for 
dynamic optimization, ill-conditioned systems and model reduction. This work aims at addressing some 
of these issues using rigorous theoretical tools and/or characteristic examples, at the same time use the 
results for solving real large-scale industrial applications to realize the benefits.  

In collaboration with Prof. Biegler (CMU) we have addressed the following issues: 

1. Large-scale parameter estimation for a reservoir application:- In a project funded by ExxonMobil 
Upstream Research Company, Houston, TX, we have proposed a novel complementarity based 
procedure for the estimation of relative-permeability and capillary pressure functions from experimental 
data on oil-reservoir core samples. The values of these flow-functions are crucial for proper exploitation 
of petroleum resources. The system can be modeled by a coupled system of PDEs, and boundary 
conditions that switch in a discrete manner depending on the value of the states at the boundary. We 
have successfully solved this large-scale application, and the solution procedure has benefited heavily 
from our research on the aforementioned directions. 

2. Trajectory planning for Fuel Cell/Gas Turbine (FC/GT) power generation systems:- In a different 
project funded by FuelCell Energy Inc., Danbury, CT, we have developed a methodology for trajectory 
planning of hybrid power generation systems to achieve better control performance that conventional 
control. The main aim of the project is to develop a dynamic optimization framework to predict 
controller moves so as to meet the power requirements, and this crucial for the operation of such plants. 
The plant consists of about 20 units (including a fuel cell stack), a lot of which are characterized by 
dynamic models, and we have been able to successfully solve the resulting large-scale dynamic 
optimization problem. We have validated the results by feeding the inputs (as suggested by the results of 
optimization) back to a plant simulator to realize the benefits of our procedure. 



3. PDE-constrained optimization:- We have attempted to solve PDE-constrained optimization problems 
by converting them to DAE-constrained optimization problems using spatial discretization. Based on 
this idea we have proposed solution procedures for two specific applications of PDE-constrained 
optimization: two-phase flow through porous media and heat transfer. 

4. Complementarity based formulations for modeling discrete decisions:- Complementarity conditions 
are a way of modeling certain discrete decisions. The advantage of using this formulation is that it gets 
rid of integer variables, and thus an NLP based solver can be employed rather than a specialized mixed-
integer nonlinear programming solver. We have used complementarity formulations for a number of 
interesting applications in optimal control, reservoir and chemical engineering. 

5. Reliability of NLP based methods for dynamic optimization:- Although NLP based methods have 
been used for an entire decade for the solution of dynamic optimization problems, the question of 
whether the NLP solution and the true solution of the dynamic optimization problem have any relation 
(as the discretization is made finer) is still an active area of research. In this direction we have tried to 
address convergence rates for NLP based methods and we have been able identify classes of problems 
for which the reliability of NLP based methods can be proved rigorously. Our results have applications 
in adjoint estimation, error analysis and mesh refinement, and we have demonstrated the implication of 
our results on the temperature control of a batch reactor. 

6. “Discretize then Optimize” vs. “Optimize then Discretize”:- Research in this direction has focused on 
classification of problems based on whether it is advantageous to discretize all the dynamic constraints 
and then solve the large-scale NLP, or to discretize the optimality conditions of the original dynamic 
optimization problem. Our analysis indicates that in the case of singular optimal control problems it may 
be better to use the “Optimize then Discretize” approach since the alternative approach does not have the 
ability to address the ill-conditioning in the problem. We have devised a numerical procedure for 
singular optimal control problems that is based on the “Optimize then Discretize” approach which 
avoids the necessity to differentiate the high-index constraints that arise in this approach. In the case of 
the path constraints, NLP based methods (“Discretize then Optimize”) may have an upper hand since 
there is the additional flexibility that the NLP solvers have wrt to constraint qualifications, and we have 
been able to exploit this to solve interesting applications. If the dynamic optimization problem is “well 
behaved” then we have been able to demonstrate equivalence between the two approaches for a certain 
class of discretization schemes. We have successfully applied our results for the boundary control of a 
heat transfer problem, optimal control of fed-batch bioreactors and semi-continuous chemical reactors. 

We believe that the future of dynamic optimization lies in large-scale applications, and in order to 
handle the scale of these problems there are two competitive approaches: employ model reduction or 
design more powerful numerical algorithms. Also this decade is marked by increased efforts in 
modeling and simulation of biological and nano-scale processes/phenomena, and dynamic optimization 
is a natural extension. We believe that research efforts in the aforementioned research directions will 
definitely make dynamic optimization a much sought after tool for such applications.  
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