
498g On the Numerical Solution of Bi-Variate Population Balance Equations under the Combined 
Action of Nucleation, Growth and Aggregation Mechanisms 
Aleck Alexopoulos and Costas Kiparissides 
An important property of many industrial particulate processes is the particle size distribution (PSD) 
which controls key aspects of these processes as well as the end-use properties of the product. In many 
processes, the dynamic PSD involves the distribution of one or more internal particle variables, i.e., 
number of radicals, amount of adsorbed species, porosity, etc. The quantitative determination of the 
evolution of such multi-variate PSDs in particulate processes is a rather complex numerical problem for 
it presupposes good knowledge of the particle nucleation, growth, and aggregation mechanisms in 
addition to the reaction kinetics (Ramkrishna and Mahoney, 2002). The evolution of the PSD in 
particulate processes is commonly obtained by the solution of population balance equations (PBE) 
which have been utilized in a diverse range of problems (Ramkrishna, 1985). In the bi-variate 
population balance equation, the distribution of particles is considered to be continuous over the volume, 
v, and an internal properties, x, and is described by a number density function, n(v,x,t), that represents 
the number of particles, per unit volume, in a differential particle volume, v to v+dv, and internal 
property, x to x+dx, size range. The rate of change of the particle number density is described by the bi-
variate PBE, which is a nonlinear integro-differential equation. The numerical solution of the PBE 
generally requires the discretization of the v and x particle domain into a small number of elements 
leading to a system of nonlinear ODE's or DAE's which is usually stiff. The PBE can be solved in its 
continuous form, e.g. by collocation on finite elements (Alexopoulos et al., 2004) or it can be solved in a 
discretized form (Kumar and Ramkrishna, 1996). Despite the increased interest in solving the dynamic 
multi-variate PBE, the majority of the numerical methods described in the open literature have not been 
adequately tested. In the present study the Galerkin finite elements method (GFEM), the sectional grid 
technique (SGT), and a Monte-Carlo (MC) stochastic method were employed to solve the dynamic bi-
variate PBE under the combined action of particle growth, aggregation and nucleation. The bi-variate 
PSDs are determined for a number of simple test problems including aggregation, combined particle 
nucleation and aggregation, as well as combined particle growth and aggregation. The calculated 
solutions are compared to the corresponding analytical solutions for the PSD. For problems where 
analytical solutions are not available the numerical solutions are evaluated by comparison of the 
calculated to the analytical PSD moments. The bi-variate GFEM is an extension of the GFEM described 
in Roussos et al. 2005. Bi-quadratic iso-parametric elements were employed and the integral-terms were 
determined based on Simpson's rule. In order to reduce the interpolation error and increase numerical 
stability, a modified Lagrangian interpolation formula was adopted. Moreover, moving discontinuities in 
the PSD (typically arising in problems involving particle growth) were effectively alleviated by the use 
of an artificial diffusion term (Alexopoulos et al. 2004). The bi-variate sectional grid technique (SGT) is 
an extension of the pivot technique of Kumar and Ramkrishna (1996) to a particulate process with an 
internal particle properties, x. The description of particle aggregation has been improved so that the bi-
variate SGT is at least an order of magnitude faster than the original un-optimized version. Finally, a 
stochastic Monte-Carlo approach was employed in which a number of particles is initially sampled and 
then allowed to evolve under the influence of aggregation, nucleation and growth. The sample particle 
number is kept above a minimum value by increasing the size of the sample volume. The PSD as well as 
the PSD moments were calculated for a wide range of aggregation rate kernels as well as various 
nucleation and growth rate functions. In all the simulations, the x-v domain was discretized into a 
number of elements (e.g., 20-50 in each direction) using a logarithmic discretization rule. The MC 
method typically employed 1000-10000 particles. For the case of pure size-independent particle 
aggregation, the bi-variate PBE was solved for a constant aggregation kernel and compared to the 
analytical solution (Gelbard and Seinfeld, 1978). It was found that the SGT displayed significant 
diffusion error in the tail region of the distribution just as in the uni-variate case. However, the peak of 
the bi-variate PSD was well predicted (i.e., in terms of position and height) and the PSD moments were 



found to be accurate (i.e., errors < 0.5%). The most accurate distributions were obtained by the GFEM 
but required more computational time. Although, the MC method produced moderately accurate 
moments (to within 1% of analytical values) it could only resolve the peak region of the PSD. Note that 
for all pure-aggregation problems the bi-variate distribution converged to a uni-variate distribution (i.e., 
of constant concentration x/v) due to aggregation-driven mixing. The evolution of the PSD in a batch 
particulate process under the combined action of a size-independent particle aggregation kernel and a 
linear power law particle growth rate was also examined. The bi-variate distributions computed using 
the FEM, SGT and MV methods were compared to the available analytical solution (Gelbard and 
Seinfeld, 1978). For this problem the moving SGT was found to be the more accurate than the 
stationary-grid GFEM. Note that at long times the stationary non-adaptive grids typically used in the bi-
variate SGT and FEM become inefficient and, thus, the MC method becomes competitive. Finally, the 
combined constant nucleation and constant aggregation case was examined. It was found that the GFEM 
was the most accurate method but required more computational time. It should be noted that the small-
volume region of the bi-variate distribution was found to converge to a “steady-state” characterized by a 
constant total particle number just as in the uni-variate case. 
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