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Abstract 

Optimization problems can be computationally intensive and therefore, 
they often use simple reduced order models for system level designs.  However, 
this simplicity can induce uncertainties in the performance indices.    In a multi-
objective context, the trade-off between different objectives can change 
significantly due to these uncertainties.    This paper presents a case study of a 
fuel cell based hybrid power system design where different levels of fuel cell 
models are used.  Uncertainties are characterized and quantified in these models 
using experimental data.  Effect of these uncertainties on multi-objective trade-off 
surfaces is analyzed.   It has been shown that improving model complexity 
results in uncertainty reduction and helps in obtaining better representation of 
trade-off surfaces. An optimal level of fuel cell model complexity has been 
identified and improving the model beyond this would not provide any significant 
enhancement of predicted results for the hybrid power plant design under focus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Nomenclature 
 
SOFC: Solid Oxide Fuel Cell 
PEMFC: Proton Exchange Membrane Fuel Cell 
MOP: Multi-objective Optimization 
ASU: Air Separation Unit 
HRSG: Heat Recovery Steam Generator 

fU  : Fuel Utilization in the fuel cell 

2
reactedH  : the total moles of hydrogen reacted in the fuel cell (kgmol hr -1) 

4
inCH :  the moles of methane  entering the fuel cell (kgmol hr -1) 
inCO : the moles of carbon monoxide entering the fuel cell (kgmol hr -1) 

2
inH  :  the moles of hydrogen entering the fuel cell (kgmol hr -1) 

2
inO  : the moles of hydrogen entering the fuel cell (kgmol hr -1) 

2
outO :  the moles of oxygen exiting the fuel cell (kgmol hr -1) 

ISOFC:  the current in the SOFC (A) 
cdsofc : the SOFC current density (mA cm-2) 
cdim: the ratio of the mean current density to the minimum current density of 
SOFC 
eref: the reference Nernst potential (V) 
ecell: the operating cell voltage (V)  
hd: the heat duty of the RGIBBS reactor representing the SOFC (Btu/hr) 
eloc: the local nernst potential (V) 
Xr: the reference fuel conversion 
r: the cell ohmic resistance (0.73 ohm cm-2) taken from the fuel cell hand book 
cdsofc: the SOFC current density (A m-2) 

( )E cdsofc  : the SOFC cell voltage as a fn. of current density (V) 

0E  : the reference cell voltage without any losses (V); 

eR  :  Electrolyte area-specific ohmic resistance (Ω m-2) 
R  : Universal gas constant (=8.314Jmol-1K-1) 
T :  Temperature (K) 
F :  Faraday constant (=96485 C mol-1) 
K :  equilibrium constant 

2

I
H Op  :  Partial pressure of H2O in the inlet stream (Pa) 

2

I
Hp  :  Partial pressure of H2 in the inlet stream (Pa) 

2

I
Op  :  Partial pressure of O2 in the inlet  stream (Pa) 

0p  :  Atmospheric pressure (Pa) 

0acdsofc  :  anode exchange current density in SOFC (A m-2) 

0ccdsofc  : cathode exchange current density in SOFC (A m-2) 

al  :  anode thickness (m) 



( )a effD  :  effective diffusion coefficient (anode) (m2 s-1) 

cl  : cathode thickness (m) 

( )c effD  :  effective diffusion coefficient (cathode) (m2 s-1) 

cp  : cathode pressure (Pa) 
cdpem:  current density (A cm-2). 
E(cdpem):  Cell voltage as a function of current density (V) 
E0:  reference voltage (V)  
cdimp:  is the ratio of mean current density to the minimum current density of 
PEMFC  
OCV:  open circuit voltage 

0cdpem  :  exchange current density in PEMFC (Acm-2) 

cellR  :  cell resistance (Ωcm2) 

limcdpem  :  limiting current density in PEMFC (Acm-2) 

H
c +  :  fixed charge concentration (molcm-3) 

ml  :  wet membrane thickness (cm) 

0,Ptcdpem  :  exchange current density per Pt surface in PEMFC (Acm-2Pt) 

PtS  :  Catalyst surface area (cm2/mg) 

PtW  :  catalyst loading (mg cm-2) 

PtU  :  catalyst utilization 

2 2O ND  : oxygen/nitrogen binary diffusion coefficient at standard conditions (cm2s-1) 

mV  :  standard molar volume (22414 cm3 mol-1) 

dl +  :  cathode gas-diffusion layer thickness (cm) 

2Ox  : gas-phase mole fraction of O2 

FUT: Fuel utilization  
ERAT: Equivalence ratio 
PPEM: Pressure of the PEM (psi) 
FUEL: Fuel Flow (kgmol hr -1) 
AIR: Air Flow (kgmol hr -1) 
CAP: Capital Cost ($/kW) 
COE: Cost of Electricity (c/kWh) 
ACEFF: Overall Efficiency 
CO2EM: CO2 Emissions (kg/kWh) 
MINSOOP: MInimize Number of Single Objective Optimization Problems 
HSS: Hammersley Sequence Sampling 
LHHS: Latin Hypercube Hammersley Sampling 
 
 
 
 



 
Greek Letters: 
 

Ohmη :  Ohmic Polarization (V) 

,Act aη  :  Anodic activation polarization (V) 

,Act cη  : Cathodic activation polarization (V) 

,Conc aη  : Anodic concentration polarization (V) 

,Conc cη  : Cathodic concentration  polarization (V) 

2Oδ  :  ratio of Knudsen diffusion coefficients  

difη :  diffusion overpotential 

convη :  overpotential associated with proton transport for convection 
ω  :  empirical constant for diffusion overpotential (Ωcm2K-1) 
ν  :  water velocity in membrane pores (cms-1) 
κ  :  membrane ionic conductivity (Ω-1cm-1) 

Rτ  :  membrane resistance/cell resistance ratio 
d
gε  :  gas porosity in gas-diffusion layer 

en  :  electrons transferred per reaction 

actη  = activation polarization (V) 

concη  = concentration polarization (V) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
1. Introduction 

Chemical process industries manage some of the most sophisticated and 
expensive engineered systems in the world, spending large amounts of money in 
plant design, operation, and maintenance. To achieve performance targets and 
at the same time reduce the number of costly pilot-scale and demonstration 
facilities, the designers of these process plants increasingly rely on high-fidelity 
computer process simulations to design and evaluate virtual plants. Existing 
commercial simulation software products used in the chemical process industries 
employ two main levels of model abstraction: 1) models of the overall process (a 
forest-level description) and 2) more detailed models of individual equipment 
items in the process (a tree-level description) [1]. The system level models used 
in the forest-level description of a chemical process tend to use simpler and 
reduced order models to represent modules for various reasons including: 1) 
speedup of computation 2) emphasis is on the overall flowsheet output rather 
than detailed output of individual modules. In this case, there is a trade-off 
between the degree of accuracy, and the speed and complexity of computation 
which gives rise to uncertainties in the design. One of our earlier papers 
concerned uncertainty analysis and multi-objective optimization  [2]  for the Solid 
Oxide Fuel Cell (SOFC))-Proton Exchange Membrane  Fuel Cell (PEMFC) hybrid 
power plant conceptual design [3]. The plant was designed using simplified 
models for both the fuel cell systems. Further, the hybrid fuel cell technologies 
are new and futuristic. Hence the system level models used to simulate the 
SOFC’s and PEMFC’s performance had significant uncertainties in them. These 
individual models were found to deviate from experimental results by as much as 
30%. . Also the performance curves for the fuel cell section of the flowsheet 
would differ depending on the materials for the anode, cathode and electrolyte. 
Substantiating this fact, it was found that there was a considerable difference 
between the deterministic and the stochastic optimization results which justified 
the necessity for uncertainty analysis. The focus of this paper is an extension of 
that work, where we reduce the uncertainties induced by the simpler fuel cell 
models, by employing higher level models for the PEMFC and SOFC. These 
models too are obviously not free from errors, but they introduce a significant 
improvement over the previous ones. We then perform deterministic and 
stochastic multi-objective optimization with the new models and compare the 
Pareto surfaces to the stochastic Pareto surface computed with the old models 
.Through this exercise, we can identify how much model complexity is sufficient 
in order to provide the decision maker with  proper design trade-offs and optimal 
designs. Comparison of the degree of similarity between the trade-off surfaces 
would give us an idea of whether the newer models for the PEMFC and SOFC 
were accurate enough for the level of detail required for the plant.  

 
 
The section following this introduction provides a brief overview of the SOFC-

PEMFC hybrid power plant conceptual design. Section 3 explains the old and 
new SOFC and PEMFC models in detail and compares the corresponding 



models. Section 4 discusses the uncertainty analysis of the new PEMFC and 
SOFC models and the stochastic multi-objective optimization (MOP) framework 
which is used to compute the Pareto surface. Section 5 presents the results of 
the optimization; analyzes and compares the trade-off surfaces computed. The 
final section puts forth conclusion drawn from this work. It should also be noted 
that the deterministic and stochastic multi-objective optimization of the flowsheet 
using the old fuel cell models shall henceforth be referred to as “stochastic old” 
and “deterministic old” respectively and analogously for the designs with new 
models, they shall be referred to as   “deterministic new” and “stochastic new”. 

 
 

2. Solid Oxide Fuel Cell (SOFC) – Proton Exchange Membrane Fuel Cell 
(PEMFC) hybrid power plant conceptual design 
This section explains the structure of each individual section of the plant in 

focus, which is the SOFC-PEMFC hybrid power system. Figure 1 shows the 
Aspen Plus flowsheet for this power plant. Only the major blocks have been 
depicted in the flowsheet for the purpose of clarity and the abbreviation of each 
section is described for each block.  

 
 

2.1  Air Separation Unit: The purpose of this module is to separate Oxygen (O2) 
and Nitrogen (N2) in ambient air because the SOFC requires a pure oxygen 
stream. 200 lbmol/hr of ambient air (O2 21%, N2 79%) stream (AMBAIR) enters 
the air separation unit (ASU) represented using an Aspen Plus “two-outlet 
component separator” model which can split components based on specified 
mass flowrate of outlet streams. The two outlet streams are: OXYGEN - 28 
lbmol/hr containing oxygen to the SOFC, NITROGEN - the rest 142 lbmol/hr 
containing 99 % N2. 



Figure 1: Aspen Plus flowsheet for SOFC-PEMFC hybrid power plant 



2.2 Solid Oxide and Proton Exchange Membrane Fuel Cell: The old and new 
models used for the SOFC and PEMFC have been explained in detail in section 
3.  
 
 
2.3   Low Temperature Shifter: The exhaust from the SOFC contains carbon 
monoxide (CO) which is a poison for PEMFC electrodes. Hence it is passed over 
to a low temperature shifter which is modeled as a Gibbs reactor (SHIFTER) at 
300 °F. The reactions occurring in the reactor decrease the CO in the stream 
from 8.13 to 0.022 lbmol/hr. But even this tiny amount of CO may adversely 
affect PEMFC performance. Hence this stream is passed over to a selective 
catalytic oxidizer to completely remove the CO. 
 
 
2.4  Selective Catalytic Oxidizer: This module reduces the CO in the stream to 
below 10 ppm. This component is modeled by a stoichiometric reactor 
(CATOXID) with 10% excess oxygen. The two reactions occurring in the oxidizer 
are: 

2 2

2 2 2

1
2
1
2

CO O CO

H O H O

+ →

+ →
 

The fractional conversion for CO is specified as ‘1’ since CO has to be eliminated 
completely and fractional conversion for O2 in reaction 2 is also specified as ‘1’. 
The exhaust from CATOXID is at a high temperature of 1750 F and contains 
50% by wt. of H2O and 25% by wt. of hydrogen (H2). The stream is separated 
into pure H2 and the rest, by a separator SEP1. The pure H2 stream is passed to 
the PEMFC and the other steam is transferred to a heat recovery steam 
generator (HRSG) which converts water to steam. 
 
 
2.5  Heat Recovery Steam Generator(HRSG): The exhaust from the SEP1 is at 
a temperature of around 1750 F. The heat of this exhaust is used to convert 10 
lbmol/hr of water to steam with a HRSG modeled by heater HRSG1. When the 
exhaust is cooled, 187000 Btu/hr of heat is extracted which is used to convert the 
water to steam. A part of this steam is recycled back to the SOFC where it is 
used as a reactant for the reforming reactions and downstream shift reactions, 
and to control against carbon deposition.  
 Finally, the exhaust from heater “B1” contains small amounts of pollutants 
like CO, H2 and moderate amounts of methane (CH4). These are converted to 
carbon dioxide (CO2) and water (H2O) in a stoichiometric reactor (ANTIPOLU) 
with the following reactions in which  fractional conversions for CO, H2 and CH4 
are specified as ‘1’.  
 
 
 



 
 
 
  

2 2 2

2 2

4 2 2 2

0.5

0.5

2 2

H O H O

CO O CO

CH O CO H O

+ →

+ →

+ → +

 

 
The key assumptions in this advanced flowsheet model are:  (1) staged  cells can 
be manufactured and installed at the same cost as unstaged cells, and (2) a 
sufficient number of cells can be staged so as to closely approach the limiting 
case performance for staged cells. Design and performance results for the hybrid 
power plant simulated in Aspen Plus using the old SOFC and PEMFC models 
are summarized in table 1.  
  
 
3.  Reducing uncertainties in the fuel cell models 

The main goal of this work is to reduce the uncertainties in the multi-
objective design of the SOFC-PEMFC hybrid power plant by utilizing higher order 
models for both the fuel cells and thereby identify the optimal model complexity 
to enable simulation of the plant with satisfactory accuracy. As a first step, this 
section presents an overview of the old and new models of both types of fuel 
cells and identifies the main areas of improvement. 

 
 

 

Power Rating 1472 kW Overall Efficiency 72.6% 

Capital Cost  1773 $/kW CO2 Emissions 0.271 kg/kWh 

Cost of Electricity 6.35 c/kWh   

SOFC  PEMFC  

Temperature 1750 °F Temperature 176 °F 
Pressure 20 psi Pressure 25 psi 

Current Density 75 mA/cm2 Current Density 190 mA/cm2 

Fuel Utilization 70%   

Equivalence Ratio 1.25   

Table 1: Design and performance results for the hybrid power plant using the old fuel cell models 



3.1 Solid oxide fuel cells (SOFC)  
The basic physical structure or building block of a fuel cell consists of an 

electrolyte layer in contact with a porous anode and cathode on either side. The 
fuel or oxidant gases flow past the surface of the anode or cathode opposite the 
electrolyte and generate electrical energy by the electrochemical oxidation of 
fuel, usually hydrogen, and the electrochemical reduction of the oxidant, usually 
oxygen. The electrolyte not only transports dissolved reactants to the electrode, 
but also conducts ionic charge between the electrodes and thereby completes 
the cell electric circuit. The functions of porous electrodes in fuel cells are to 
provide a surface site where gas/liquid ionization can take place and to conduct 
ions away from interface once they are formed. As with batteries, individual fuel 
cells must be combined to produce appreciable power levels and so are joined in 
series by interconnects in a stack. Interconnects must be electrical conductors 
and impermeable to gases.  Figure 2 shows a schematic configuration of a 
planar SOFC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since Aspen Plus [4, 5] does not include any inbuilt fuel cell model, there are two 
approaches to overcome this problem. The first way is to use a standard reactor 
model, like a stoichiometric and/or equilibrium reactor, to perform energy and 
mass balances around the fuel cell. This unit is then coupled with a polarization 
model for voltage and current computations. Alternatively, a new unit (User 
Model) based on a FORTRAN subroutine is used to perform mass and energy 
balances and polarization characterization. The former approach has been 
chosen for both the old and new SOFC models. The unit operation blocks used 
for both models are similar. As seen in figure 1, 20 lbmol/hr of natural gas fuel 
(FUEL) and 20 lbmol/hr of H2O (WATER1) are mixed and sent to the SOFC 
modeled using an ‘RGIBBS’ equilibrium reactor module which computes 
chemical equilibrium based on Gibbs free-energy minimization. The difference 
lies in the FORTRAN subroutine to calculate the current density – voltage 
characteristics and the total cell area. 

Figure 2: Fuel cell repeated unit in a fuel cell stack. 



 The reactions that take place in a fuel cell are: methane steam reforming, 
carbon monoxide water shift and hydrogen electrochemical oxidation. 

 
4 2 2

2 2 2

2 2 2

3             (methane steam reforming)
              (CO water shift)

1                        (electrochemical oxidation)
2

CH H O H CO
CO H O CO H

H O H O

+ → +
+ → +

+ →

 

 
The first two reactions are at equilibrium [6] while hydrogen oxidation has fixed 
extent in order to match the given fuel utilization. Fuel utilization is defined as: 
 

                                   2

4 2

(3.1)
4

reacted

f in in in

HU
CH CO H

=
+ +

 

 
where 2

reactedH  are the total moles of hydrogen reacted, 4
inCH , inCO , 2

inH  are the 
moles of methane, carbon monoxide and hydrogen entering the cell respectively, 
4 moles of H2 are generated by each mole of methane and so 4

inCH  is multiplied 
by 4 and analogously  inCO  is multiplied by 1. 
 

The reaction extent of the electrochemical reaction is determined by a 
“design specification” that acts as a feedback controller. Reaction extent is 
manipulated so that: 

 

 ( )2 2 4 2
1 4 (3.2)
2

in out in in in
fO O U CH CO H− = ⋅ ⋅ + +   

    
where 2

inO  and 2
outO  are the moles of oxygen entering and exiting the cell and fU  

is the fuel utilization. Oxygen was chosen as the reference element because it 
reacts only with hydrogen. Recycling of the gaseous outlet of the cell is 
necessary in order to reach the desired fuel conversion. The electrochemical 
oxidation of CO was neglected because in presence of water, the favorable path 
for the oxidation of carbon monoxide is generating hydrogen by the water shift 
reaction [6, 7].  
 

At a fixed temperature, a heat balance around the reactor gives the power 
output ‘hd’ of the cell. The power output divided by the current (known once the 
fuel utilization is fixed) gives the voltage of the cell. Current can be computed as 

( )2 4 22 2 4 (3.3)reacted in in in
fISOFC F H F U CH CO H= ⋅ ⋅ = ⋅ ⋅ ⋅ + +    

where ISOFC is the current (A) and F is the Faraday constant (96485 C/mol). 
At this point, an SOFC polarization model is used to compute the current density 
of the cell at that given voltage.  
 



 
3.1.1 Old SOFC polarization model 
 

The polarization model used in our earlier studies is based on the work by 
Geisbrecht [8] and is described below. 
The SOFC current density is given by: 
 

2dim( )(2.54*12) (3.4)eref ecellcdsofc c
r
−=    

 
‘cdsofc’ is the SOFC current density (in mA/cm2) 
‘cdim’ is the ratio of the mean current density to the minimum current density of 
SOFC calculated iteratively within the process flowsheet and given by the 
equation:  
 

1

dim (3.5)rX

r

eref ecell dX
eloc ecell

c
X

−
⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

∫
  

 
‘eref’ is the reference Nernst potential (in V) 
‘ecell’ is the operating cell voltage (in V) given by: 
 

(1000* )
3412 (3.6)

hd

ecell
ISOFC

=   

 
‘hd’ is the heat duty of the RGIBBS reactor representing the SOFC (Btu/hr) 
‘ISOFC’ is the current in the SOFC (in A) 
‘3412’ is the conversion of the heat duty is Btu/hr to kilowatt-hour 
‘1000’ is the conversion of kilograms to grams consistent with the units of ISOFC 
‘eloc’ is the local nernst potential (in V) 
‘Xr’ is the reference fuel conversion 
‘r’ is the cell ohmic resistance (0.73 ohm/cm2) taken from the fuel cell hand book 
[7] 
 

After flowsheet convergence, a design sequence is executed one time to 
determine the current density distribution. Converged results (fuel and air feeds 
including recycle, fuel conversion, cell voltage and heat loss.) are used as input. 
An outer iteration is used to determine cell area, and an inner loop is used to 
cycle through the discretized cell. Calculation blocks are used to store fuel and 
air stream vectors and to determine current in each element that equilibrates the 
local Nernst potential to the cell voltage using cell area and local resistance [8].  



This model does not take into factor any voltage losses due to: 1) 
activation polarization, 2) concentration polarization and 3) ohmic polarization. 
This induces a considerable degree of error in the prediction as will be shown in 
the results and discussion section.  This necessitated selection of a higher level 
model for the SOFC. Selecting a suitable SOFC model to implement involved a 
survey of various models available in literature. There are number of papers in 
the literature concerning SOFC behavior modeling which could be classified as 
steady state [9-16] and dynamic [17] models.  A 1-dimensional, steady state, 
algebraic polarization model derived from literature [11] was used for our study. 

 
3.1.2 Higher level SOFC model  

Equations 3.7-3.13 represent the main equations of the 1-dimensional, 
steady state, algebraic polarization model [11]. This particular model was chosen 
because of its simplicity and comprehensive nature (applicability to every 
operating condition and sensitivity to the various design components of the cell). 
Overpotential equations, based on the complete Butler-Volmer and diffusion 
equations, are obtained together with the necessary parameters from the 
reference [11].   

 

Where: 
 
cdsofc = current density (A/m2) 

( )E cdsofc  = Cell voltage as a fn. of current density  (V) 

0E  =  Ideal cell voltage without any losses (V); 

Ohmη  = Ohmic Polarization (V) 

,Act aη  = Anodic activation polarization (V) 

,Act cη  = Cathodic activation polarization (V) 

2

2 2
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2
0

0 2

1
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1
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( ) (3.7)
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2
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4

c

I
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I
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= − ⎢ ⎥

⎢ ⎥⎣ ⎦
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,Conc aη  = Anodic concentration polarization (V) 

,Conc cη  = Cathodic concentration  polarization (V) 

eR  = Electrolyte area-specific ohmic resistance (Ω /m2) 
R  = Universal gas constant (=8.314Jmol-1K-1) 
T = Temperature (K) 
F = Faraday constant (=96485 C mol-1) 
K = equilibrium constant 

2

I
H Op  = Partial pressure of H2O in the inlet stream (Pa) 

2

I
Hp  = Partial pressure of H2 in the inlet stream (Pa) 

2

I
Op  = Partial pressure of O2 in the inlet  stream (Pa) 

2Oδ  = ratio of Knudsen diffusion coefficients  

0p  = Atmospheric pressure (Pa) 

en  = electrons transferred per reaction 

0acdsofc  = anode exchange current density (Am-2) 

0ccdsofc  = cathode exchange current density (Am-2) 

al  = anode thickness (m) 

( )a effD  = effective diffusion coefficient (anode) (m2s-1) 

cl  = cathode thickness (m) 

( )c effD  = effective diffusion coefficient (cathode) (m2s-1) 

cp  = cathode pressure (Pa) 
 
Since the model gives the voltage as a function of current density, 

Newton-Raphson method (3.15) is applied in order to get iteratively the current 
density at the desired voltage:  

 
( ) ( ) 0 (3.14)V i V f i− = =      

 1 '

( ) (3.15)
( )n n

f ii i
f i

α+ = − ⋅   

     
where ( )V i  is the voltage as function of current density (i), V  is the desired 
voltage, α  is a weight parameter, and ' ( )f i  is the numerical derivative of ( )f i .  
Once the current density is obtained, current divided by current density gives the 
total cell area (area of the electrodes), important for cost estimations. 
 
3.2 Proton Exchange Membrane fuel cell (PEMFC)  

The utilization of the reformed fuel is completed in the PEMFC where more 
favorable thermodynamics apply. 21.57 lbmol/hr of pure hydrogen enters the 
PEMFC modeled as a stoichiometric reactor (PEMFC) in figure 1. The reaction 
occurring in the reactor is specified as: 



2 2 2
1
2

H O H O+ →   

Here the fractional conversion of H2 is  specified as ‘1’ (implying 100% fuel 
utilization).  
 
3.2.1 Old PEMFC model 
 

The model methodology for the PEMFC is similar to that employed in the 
old SOFC model. A stoichiometric reactor performs energy and mass balances 
around the fuel cell. This unit is then coupled with a polarization model for 
voltage and current computations. The cell voltage as a function of the current 
density is defined by equations 3.16-3.18   

0

5

( ) (3.16)
0.04249 0.030395*log( ) (3.17)

4.336 10 log(1 0.001* ) (3.18)
1.1

act conc

act

conc

E cdpem E
cdpem

cdpemT

η η
η

η −

= − −
= +

= − × × × −

 

cdpem = current density (A/cm2). 
E(cdpem) = Cell voltage as a function of current density (V) 
E0 = reference voltage (V)  

actη  = activation polarization (V) 

concη  = concentration polarization (V) 
T = temperature of outlet stream from PEMFC (K) 
 
The PEMFC model gives the voltage as a function of current density. Again, 
Newton-Raphson method (3.15) is applied in order to get iteratively the current at 
the desired voltage:  The calculated current density is adapted to the cost model 
for the fuel cell using equation 3.21.   
 

2*0.001* *(2.54*12) (3.21)cd cdimp cdpem=   
 
‘CD’ is the PEMFC current density (in mA/cm2) 
‘cdimp’ is the ratio of mean current density to the minimum current density of 
PEMFC calculated iteratively within the process flowsheet (analogous to 
equation 3.5) 
‘cdpem’ is the value of current density  in the PEMFC calculated iteratively as 
shown previously (A/cm2).    
 
3.2.2 Higher Level PEMFC model 

The new PEMFC model is based on the work of Maggio et al. [18].  
Maggio et al. developed a one-dimensional steady state simulation model 
considering also electrode flooding and membrane dehydration, which is not 
accounted for in the old model. The irreversible losses (overpotentials) which 
make the cell voltage lower than the ideal theoretical value are computed as a 
function of operating conditions, current density, membrane properties, catalyst 



properties, water management, and empirical parameters. The dependence on 
so many parameters makes the model suitable for different cell conditions and 
designs, unlike purely empirical models which are tuned on one particular case. 
The main equations for the model are provided in equations 3.22 – 3.30. Some 
salient points of the model are: 

 
• Cell resistance is considered to vary as a function of the current 

density, depending on the water balance conditions. 
• Unlike classical approaches, the limiting current density (Ilim) varies as 

a function of the cell current density. 
• Gas porosity in the diffusional layer depends on current density. 
• Membrane ionic conductivity varies according to the anode or cathode 

dehydration. 
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Where: 
E0 = open circuit voltage 

actη  = activation overpotential 

ohmη  = ohmic overpotential 

difη  = diffusion overpotential 

convη  = overpotential associated with proton transport for convection 
R  = Universal gas constant (=8.314Jmol-1K-1) 
T = Temperature (K) 
F = Faraday constant (=96485 C mol-1) 
cdpem  = current density (Acm-2) 



0cdpem  = exchange current density (Acm-2) 

cellR  = cell resistance (Ωcm2) 
ω  = empirical constant for diffusion overpotential (Ωcm2K-1) 

limcdpem  = limiting current density (Acm-2) 

H
c +  = fixed charge concentration (molcm-3) 

ml  = wet membrane thickness (cm) 
ν  = water velocity in membrane pores (cms-1) 
κ  = membrane ionic conductivity (Ω-1cm-1) 

0,Ptcdpem  = exchange current density per Pt surface(Acm-2Pt) 

PtS  = Catalyst surface area (cm2mg-1) 

PtW  = catalyst loading (mgcm-2) 

PtU  = catalyst utilization 

Rτ  = membrane resistance/cell resistance ratio 

2 2O ND  =oxygen/nitrogen binary diffusion coefficient at standard conditions (cm2s-1) 
d
gε  = gas porosity in gas-diffusion layer 

mV  = standard molar volume (22414 cm3mol-1) 

dl +  = cathode gas-diffusion layer thickness (cm) 

2Ox  = gas-phase mole fraction of O2 
 
4. Multi-objective optimization framework and Uncertainty Analysis 
It has been shown in our earlier work [3] that this SOFC-PEMFC hybrid power 
plant poses a multi-objective problem.  Table 2 shows the multi-objective 
optimization problem formulation for this SOFC-PEMFC  hybrid power plant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Objectives : 

 Min Capital cost (CAP) 

 Min Cost of electricity (COE) 

 Min CO2 emissions (CO2EM) 

 Max Current density SOFC (CDSOFC) 

 Max Current density PEM (CDPEM) 

 Max Overall efficiency (ACEFF) 
 

    

Subject to 
 Mass & energy balance constraints   

 Power rating of 1472 kW (Base case)    

Decision variables 
 Fuel utilization (UTIL) 

 Equivalence ratio (ERAT) 

 Pressure of the PEM (PPEM) 

 Fuel Flow (FUEL) 

 Air Flow (AIR) 

Table 2: The objectives, constraints and decision variables for the SOFC-PEM hybrid fuel cell power plant 



As is well known, mathematics cannot isolate a unique optimum when there are 
multiple competing objectives.  Mathematics can at most aid designers to 
eliminate design alternatives dominated by others, leaving a number of 
alternatives in what is called the Pareto set.   For each of these solution 
alternatives, it is impossible to improve one objective without sacrificing the value 
of another one.  In our earlier work [3], we computed the Pareto set for this multi-
objective problem using the old models of SOFC and PEMFC.  However, as 
mentioned earlier, these models have significant uncertainties in them. As a first 
step towards analyzing the effect of uncertainties, we used the experimental data 
from [8] to characterize and quantify uncertainties.  It was found that the Pareto 
surfaces obtained using deterministic and stochastic analysis, were significantly 
different [3].  In this work, we are extending this analysis further.  As better 
experimental data is available, we re-characterized the uncertainties in old as 
well new models using this new experimental data from the literature [18, 19].    
Pareto surfaces are generated for the old and new deterministic and stochastic 
models.  The aim is to find the optimal model complexity for such an analysis. 
 
4.1  Characterization and quantification of uncertainty 

The uncertainty analysis consists of 4 main steps: (1) characterization and 
quantification of uncertainty in terms of probability distributions, (2) sampling from 
these distributions, (3) propagation through the modeling framework, (4) analysis 
of results [20]. The first step is of foremost importance on which the validity of the 
uncertainty analysis rests on. Characterization refers to the process of 
representing uncertainty through mathematical expressions in order to facilitate 
analysis with mathematical tools [21]. In this case, the uncertainties in the fuel 
cell models have been quantified in terms of a parameter called the “Uncertainty 
Factor” (UF) defined as the ratio between the model predicted voltage and the 
experimental voltage for each current density. Quantification refers to the 
representation of uncertainty with probability distribution functions (PDF) 
illustrating the frequency of occurrence of each uncertainty. In uncertainty 
analysis, the output variables like the different objective function values which are 
functions of the uncertain parameters do not have a specific point value.   In our 
analysis, they are represented as expected values over repeated sampling 
iterations. The probability distributions of each uncertain parameter are sampled 
and propagated through the framework and this is repeated a specific number of 
times to compute the expected value of the objectives. The sampling technique 
employed also has an impact on efficiency of the uncertainty analysis.  This is 
discussed in the next sub-section.  Figures 3 and 4 show the uncertainty 
distributions of the new and old SOFC models.    
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Uncertainty distribution of UF for the SOFC old model 
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   Figure 4: Uncertainty distribution of UF for the SOFC new model 

Uncertainty distribution of SOFC new model

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.6 0.8 1 1.2 1.4

Uncertainty Factor

P
ro

ba
bi

lit
y 

Di
st

rib
ut

io
n 

Fu
nc

tio
n

Original data
Fitted distribution



The figures illustrate the reduction of uncertainty facilitated by the higher level 
SOFC model. The variance of the uncertainty distribution has decreased in figure 
4 and additionally, the most likely value (mean) is very close to 1 which means 
that the model predicted voltage values are closer to the experimental voltages 
for all current densities compared to the mean of the uncertainty distribution for 
the old model which is around 0.9.  Similarly, figures 5 and 6 illustrate the 
comparison between the levels of uncertainty in the new and old PEMFC models 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Uncertainty distribution of UF for PEMFC old model 
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   Figure 6: Uncertainty distribution of UF for PEMFC new model 
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An interesting point to note in the case of PEMFC, is that though there is no 
difference between the variance of the two plots, the most likely value (and 
mean) of the uncertainty distribution plot for the new PEMFC model is almost 
equal to 1, while that for the old model is 0.83. This means that, there is little 
reduction of uncertainty between the old and new model, but the new model is 
considerably much more accurate than the old model. 
4.2 Pareto Surface computation and analysis 

The next step is to sample the distributions, propagate the uncertainties 
and obtain stochastic multi-objective optimization trade-off surfaces.  The 
conceptual framework for this stochastic MOP problem is shown in figure 7, 
where the outer multi-objective optimization algorithm is used to formulate 
number of optimization problems to generate the Pareto set of non-dominating 
alternatives. The inner most loop addresses the question of uncertainty where 
the deterministic model is converted to stochastic model. Both these loops are 
recursive and computationally very expensive as compared to a single 
deterministic optimization problem. Therefore, we utilize efficient algorithms to 
alleviate this problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The algorithmic framework for MOP under uncertainty with hierarchy of models. 



A generalized Multi-objective(MOP) problem can be formulated as follows: 
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where x and y are continuous like flowrate, design variables, and discrete 
decision variables related to type of fuel, selection of units, connectivity of units in 
the flowsheet, and p is the number of objective functions. The functions h(x, y) 
and g(x, y) represent the equality and inequality constraints, respectively. There 
is a large array of analytical techniques to solve this MOP problem; however, the 
MOP methods are generally dividedinto two basic types: preference-based 
methods and generating methods [2]. Preference-based methods like goal 
programming attempt to quantify the decision-maker’s preference, and with this 
information, the solution that best satisfies the decision-makers’ preference is 
then identified. Generating methods, such as the weighting method and the 
constraint method, have been developed to find the exact Pareto set or an 
approximation of it. In this work, it is necessary to develop appropriate multi-
criteria techniques to provide decision makers with the complete economic 
environmental-operational surface, so that decision makers would know the full 
range of alternatives and understand the trade-offs among the objectives implied 
by each alternative before making their selection. This involves finding a 
population of solutions from a very large number of design alternatives, such that 
no one dominates any of the others in the population (generating method). A 
pure algorithmic approach to solving is to select one of the objectives to minimize 
while the remaining others are turned into an inequality constraint with a 
parametric right-hand-side, Lk. The problem takes on the following form: 
 
min , (3.32)
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where Zj is the chosen j-th objective that we wish to optimize. Solving repeatedly 
for different values of Lk leads to the Pareto set, and this approach is equivalent 
to calculating an integral over the space of objectives. For MOP under 
uncertainty, this problem includes probabilistic distributions for uncertain 
variables and the objective and constraints are expressed in terms of 
probabilistic functions like mean, variance, and fractiles. The MOP framework 
proposed in this work (Figure 7) involves three levels. Detailed descriptions and 
the proposed efficiency improvements of this framework are explained in the 
following paragraphs. 
Level 1, Sampling loop: One of the most widely used techniques for sampling 
from a probability distribution is the Monte Carlo sampling technique, which is 
based on a pseudo-random generator to approximate a uniform distribution (i.e., 



having equal probability in the range from 0 to 1). The specific values for each 
input variable are selected by inverse transformation over the cumulative 
probability distribution. A Monte Carlo sampling technique also has the important 
property that the successive points in the sample are independent. Nevertheless, 
in most applications, the actual relationship between successive points in a 
sample has no physical significance; hence, the randomness/independence for 
approximating a uniform distribution is not critical. In such cases, uniformity 
properties plays a more critical role in sampling, as a result, constrained or 
stratified sampling techniques are more appealing. In recent years, efficient 
sampling techniques like Hammersley sequence sampling (HSS), and Latin 
Hypercube Hammersley Sampling (LHHS) based on Hammersley points has 
been proposed by our group [22, 23], which use an optimal design scheme for 
placing the n points on a k-dimensional hypercube. This scheme ensures that the 
sample set is more representative of the population, showing uniformity 
properties in multi-dimensions, unlike Monte Carlo, Latin hypercube [2], and its 
variant, the Median Latin hypercube sampling technique. It has been found that 
the HSS/LHHS techniques are at least 3 to 100 times faster than LHS and Monte 
Carlo techniques and hence is a preferred technique for uncertainty analysis, as 
well as nonlinear optimization under uncertainty. 
Level 2, Continuous optimizer: This level deals with finding optimal decisions 
based on Non-Linear Programming (NLP) algorithms Among the quasi-Newton-
based methods, the successive quadratic programming (SQP) method is used 
for this framework because it requires far fewer function and gradient evaluations 
than other methods for highly nonlinear constrained optimization, and it does not 
need feasible points at intermediate iterations. Both of these properties make 
SQP one of the most promising techniques for problems dealing with nonlinear 
constraint optimization, like process simulations.  
 Level 3, MOP: The multi-objective optimization algorithm used in this work is 
based on the newly developed MINSOOP algorithm [23]. This algorithm uses the 
HSS technique to generate combinations of the right-hand-side. The aim is to 
MInimize Number of Single Objective Optimization Problems (MINSOOP) by 
exploiting the n-dimensional uniformity of the HSS technique. 
 
4. Results and discussion 
The first step in computing the Pareto surface is calculation of the pay-off table, 
obtained by performing the optimization (maximization and minimization) for each 
objective individually without any constraints thereby obtaining the bounds for 
each objective. Tables 3 and 4 are the pay-off tables for the deterministic old 
MOP and stochastic old MOP respectively. The pay-off table is a first 
approximation to the trade-off surface and provides an overview of the trends for 
the designs. These two tables give an indication of the considerable differences 
between the stochastic and deterministic old model designs. Comparing 
corresponding designs in tables 3 and 4, it can be noted that the optimal decision 
variables for almost all of the designs are quite different and consequently, the 
objectives also vary.  On the other hand, tables 5 and 6 show the degree of 
closeness between corresponding designs of the stochastic and deterministic 



new model cases respectively.   It can be clearly noted that most of the designs 
in tables 5 and 6 are appreciably close to each other except the maximum SOFC 
current density design. This can be attributed to the existence of multiple 
solutions due to the highly non-convex nature of the surface. Figure 8 illustrates 
the trade-offs for the deterministic and stochastic old model MOP respectively. 
Confirming the trends inferred from the pay-off tables, it can be seen that there is 
a considerable difference in the contour shape and levels between the Pareto 
surfaces; the deterministic MOP has underestimated the capital cost for a 
majority of the designs. Uncertainty analysis has introduced a marked change on 
the final trade-offs which leads us to the conclusion that the previous models 
utilized for the PEMFC  and the SOFC have a higher degree of inaccuracy in 
predicting the fuel cell performances and reinforces the necessity for more 
accurate models of a higher complexity. 
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Figure 8: Comparison of the old model deterministic and old model stochastic MOP trade-off surfaces 
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 MAX MIN MIN MIN MAX MIN MAX MIN MIN MAX 
 ACEFF ACEFF CAP COE CO2EM CO2EM CDPEM CDPEM CDSOFC CDSOFC 

Design No. 1 2 3 4 5 6 7 8 9 10 
           

PWRTG 1475.1856 1465.51 1568.3258
7 

1469.0955 1634.2934
05 

1470.4051 1500.2414
2 

1496.3793 1471.963 1471.99 

ACEFF 0.7232446 0.52 0.6008321 0.58273 0.5426174 0.7066749 0.5753043
7 

0.7077066 0.7262587
77 

0.5184094
19 

CAP 1456.4933 1599.8093
8 

994.78357
9 

993.38655 1444.397 1281.9228
6 

739.9451 1289.6887 1664.6514 563.50817
08 

COE 5.67E-02 5.63E-02 4.16E-02 4.28E-02 5.05E-02 4.15E-02 3.68E-02 5.15E-02 6.28E-02 3.33E-02 
CO2EM 0.2728659 0.3788568

4 
0.3284591 0.3386584 0.3636978

4 
0.2793638 0.343033 0.2788567

9 
0.2717334 0.3806813

45 
CDSOFC 101.86 672.009 531.131 616.0684 737.20968

9 
157.61178

44 
678.179 149.0192 76.34382 873.91427

17 
CDPEM 290.3345 304.847 308.62476 307.62895 294.63637 294.38629 319.5917 287.22287 293.60287

6 
318.95470

32 
           

UTIL 0.69993 0.55147 0.43617 0.40266 0.41114 0.7 0.4 0.7 0.7 0.4039 
PPEM 23.3115 36.8556 39.7391 36.189 20.1208 26.3631 75 20 25.3265 72.12 
ERAT 1.37434 5.69168 1.25 1.25 3.01218 1.79611 1.88651 1.70141 1.25 4.566 
FUEL 20.1683 27.8188 25.8102 24.9279 29.7814 20.5743 25.7853 20.9073 20.0408 28.07 
AIR 189.276 851.883 137.29 122.408 359.824 252.367 189.831 242.929 171.08 505.365 

Table 3: The bounds for different objectives calculated by deterministic old model multi-objective optimization 



 
 
 
 
 

 MAX MIN MIN MIN MAX MIN MAX MIN MIN MAX 
 ACEFF ACEFF CAP COE CO2EM CO2EM CDPEM CDPEM CDSOFC CDSOFC 

Design No. 1 2 3 4 5 6 7 8 9 10 
           

PWRTG 1466.273 1471.865 1400.025 1471.638 1496.265 1471.738 1471.233 1472.000 1520.825 1472.265 
ACEFF 0.728 0.485 0.660 0.665 0.510 0.731 0.564 0.723 0.695 0.510 

CAP 2695.595 3137.087 1932.397 1946.113 6326.013 3122.307 1929.479 2381.998 2039.052 2752.956 
COE 0.084 0.089 0.065 0.065 0.158 0.095 0.063 0.078 0.068 0.081 

CO2EM 0.271 0.407 0.299 0.297 0.387 0.270 0.350 0.273 0.284 0.387 
CDSOFC 89.278 838.060 224.132 242.574 833.968 64.362 669.148 75.412 117.201 839.433 
CDPEM 48.500 45.497 47.017 48.570 51.782 48.478 52.591 41.911 45.592 48.011 

           
UTIL 0.697 0.450 0.580 0.628 0.427 0.700 0.400 0.700 0.664 0.401 

PPEM 64.955 18.000 31.938 52.115 65.806 65.338 75.000 15.769 29.519 26.890 
ERAT 1.322 6.100 1.561 2.174 5.935 1.250 2.400 1.274 1.670 4.469 
FUEL 19.909 30.037 20.979 21.890 29.007 19.898 25.786 20.125 21.644 28.539 
AIR 178.961 804.397 185.255 291.781 717.919 169.866 241.505 175.085 233.944 500.000 

Table 4: The bounds for different objectives calculated by stochastic old model multi-objective optimization 



Extending on what was already mentioned in the introduction, the 
stochastic old model results are expected to be closer to the experimental values 
than the deterministic old model results. Now by replacing the old PEMFC and 
SOFC models with new ones, since the new models reduce the uncertainties 
and/or is more accurate, the deterministic new model MOP results should to a 
certain degree similar to the stochastic old model MOP results. The stochastic 
new model trade-off surface should also agree with the deterministic new model 
surface and to a greater degree. This would prove that the models are of 
sufficient complexity for the level of detail required for the overall flowsheet. An 
initial indication of the trend of similarity between the three cases: 1) stochastic 
old model MOP, 2) deterministic new model MOP and 3) stochastic new model 
MOP can be noticed in tables 4, 5 and 6 respectively. The new SOFC model 
stochastic optimization predicts current densities within a range of 210 – 735 
mA/cm2 as compared to a range of 70 – 850 mA/cm2 predicted by the old model 
stochastic optimization and new model deterministic optimization. Though the 
new model stochastic optimization differs on the extreme ranges, it should be 
noted that within the range of 200 – 735 mA/cm2, the objectives for all designs 
for the three cases are within 20% of each other except on a few cases where 
they are otherwise. This anomaly can be attributed to the existence of multiple 
solutions. 



 

 

 MAX MIN MIN MIN MAX MIN MAX MIN MIN MAX 
 ACEFF ACEFF CAP COE CO2EM CO2EM CDPEM CDPEM CDSOFC CDSOFC 

Design No. 1 2 3 4 5 6 7 8 9 10 
           

PWRTG 1471.450 1482.950 1473.595 1471.958 1475.595 1469.537 1468.098 1458.403 1474.692 1468.575 
ACEFF 0.723 0.473 0.649 0.652 0.497 0.710 0.561 0.712 0.711 0.502 

CAP 2568.988 3503.311 2092.292 2107.947 6219.265 2752.843 1891.745 2420.518 2119.980 2910.327 
COE 0.082 0.097 0.068 0.069 0.156 0.087 0.062 0.079 0.071 0.084 

CO2EM 0.273 0.417 0.304 0.303 0.397 0.278 0.352 0.277 0.278 0.393 
CDSOFC 75.301 814.996 202.020 210.970 854.701 69.013 693.001 85.005 105.697 866.026 
CDPEM 45.841 37.580 42.841 45.235 51.808 46.300 53.566 33.323 39.962 46.169 

           
UTIL 0.699 0.455 0.590 0.650 0.428 0.682 0.407 0.691 0.700 0.400 

PPEM 63.329 19.129 37.180 53.000 65.718 63.573 75.000 18.165 34.944 38.491 
ERAT 1.288 6.100 1.768 2.550 6.073 1.381 2.047 1.296 1.551 4.537 
FUEL 20.118 30.984 22.446 22.331 29.359 20.460 25.873 20.250 20.504 28.945 
AIR 176.849 838.736 228.225 361.109 744.192 188.154 210.527 176.983 217.202 512.635 

Table 5: The bounds for different objectives calculated by deterministic new model multi-objective optimization 



 
 
 

 MAX MIN MIN MIN MAX MIN MAX MIN MIN MAX 
 ACEFF ACEFF CAP COE CO2EM CO2EM CDPEM CDPEM CDSOFC CDSOFC 

Design No. 1 2 3 4 5 6 7 8 9 10 
           

PWRTG 1499.525 1472.298 1416.973 1460.106 1448.738 1501.591 1469.467 1472.094 1467.093 1469.744 
ACEFF 0.720 0.472 0.663 0.679 0.493 0.723 0.550 0.689 0.713 0.500 

CAP 2653.190 3545.513 1766.678 2120.356 6342.055 2785.379 1886.987 2395.730 1702.580 2985.674 
COE 0.080 0.098 0.061 0.069 0.159 0.083 0.063 0.074 0.060 0.086 

CO2EM 0.274 0.418 0.298 0.291 0.400 0.273 0.359 0.286 0.277 0.394 
CDSOFC 218.442 745.849 355.234 229.660 700.000 214.351 318.568 276.604 213.115 735.000 
CDPEM 52.631 42.684 47.457 52.081 57.605 52.575 59.440 38.123 42.981 43.020 

           
UTIL 0.693 0.450 0.606 0.694 0.430 0.696 0.400 0.650 0.700 0.479 

PPEM 65.728 16.982 32.092 62.090 65.762 65.863 75.000 15.000 25.000 18.000 
ERAT 1.261 7.000 1.560 2.330 6.093 1.261 2.400 1.296 1.459 5.131 
FUEL 20.581 30.835 21.129 21.255 29.028 20.546 26.402 21.123 20.355 29.040 
AIR 175.393 947.903 195.022 335.394 741.128 175.912 247.278 173.602 202.775 696.044 

Table 6: The bounds for different objectives calculated by stochastic new model multi-objective optimization 



These initial indications of similarity observed with the pay-off tables can be 
confirmed with the full Pareto surfaces. For reasons of comparison, the range of 
data corresponding to a CDS of 210 – 735 mA/cm2  has been displayed. This 
comparison of Pareto surfaces would determine whether the higher level fuel cell 
models have enabled achieving a reasonable level of accuracy. Figure 9 
compares the Pareto surfaces of the three objectives: ACEFF (x-axis), CO2 
emissions (y-axis) and CAP (z-axis) for the three cases:  stochastic new model, 
deterministic new model and stochastic old model MOP. There is a general trend 
of green and yellowish green in all 3 surfaces and additionally there are also 
specific regions of similarity which have been highlighted. For example there is a 
2400 $/kW CAP region in the upper left corner of all surfaces corresponding to a 
CO2EM of around 0.38 kg/kWh and an overall efficiency of around 0.52. A 1800 
$/kW region can also be noted in the lower right corner of all surfaces, 
corresponding to a CO2EM of 0.28 kg/kWh and ACEFF of 0.70. There exists a 
1400-1600 $/kW region in the ACEFF range of 0.64-0.66 and CO2EM of around 
0.30 kg/kWh. in all three surfaces. Finally we can see a 2200-2400 $/kW area at 
an ACEFF of around 0.56 and CO2EM of 0.34 in the new deterministic and new 
stochastic surfaces, but is not present in the old stochastic surface. Figure 10 
compares the Pareto surfaces of the three objectives: ACEFF (x-axis), CDSOFC 
(y-axis) and CAP (z-axis) for the three cases: stochastic new model, deterministic 
new model and stochastic old model MOP. The first impression when the 
surfaces are seen together is the overall similarity in the color trends - region of 
blue and dark green in the right hand area and region of light green and yellow in 
the left hand area of all three surfaces. There is a 2200-2400 $/kW region 
corresponding to a CDS of 350-500 mA/cm2 and ACEFF of 0.55-0.58 in the old 
model stochastic surface. The same region, but with a slightly decreased CAP 
can also be seen in the new model deterministic and stochastic surfaces, though 
they are split into 2 separate regions. Another region of similarity between the 
new model stochastic and deterministic is the 2200-2400 $/kW region in upper 
left corner of the surface corresponding to high CDS and low efficiency. This 
trend is faintly noticeable in the old stochastic surface where this particular region 
is light green in color and on the verge of turning yellowish.  There is also a 2000 
$/kW region around an efficiency range of 0.64-0.66 and CDS of 290 mA/cm2 
present in all three surfaces. The comparison of these 2 sets of Pareto surfaces 
provide sufficient evidence that the current higher level models for the SOFC and 
PEMFC  are sufficiently complex for the SOFC-PEM flowsheet to obtain 
reasonable multi-objective optimal designs and trade-off surfaces. 

In this paper, we have shown only  2 sets of Pareto surfaces but these 
trends are be observed for the trade-off surfaces of all objectives and designs. 
The extent of closeness between the old stochastic, new deterministic and new 
stochastic, more so between the latter two leads to the conclusion that through 
utilization of the new SOFC and PEMFC models, an optimal limit of accuracy has 
been reached and using more complex models would not provide any significant 
enhancement of predicted results. 
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Figure 9: Comparison of the Pareto surfaces for the three objectives: ACEFF, CO2EM and CAP 
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Figure 10: Comparison of the Pareto surfaces for the three objectives: ACEFF, CDS and CAP 
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5. Conclusions 
In this work, we are identifying the optimal model complexity given that 

system level models tend to have uncertainties. This is achieved by accurately 
characterizing, and quantifying uncertainties in different levels of models. The 
models are chosen based on the uncertainty reductions they offer.   The optimal 
complexity is checked based on the comparison of deterministic and stochastic 
Pareto surfaces in a multi-objective setting.   In this work, we have dealt with the 
system level models of SOFC and PEMFC for a hybrid power plant design.    The 
solution of an MOP is not a single solution but a Pareto surface.  To obtain these 
Pareto surfaces for deterministic and stochastic analysis, we needed an efficient 
framework.   This framework is based on efficient algorithms like the MINSOOP 
algorithm for multi-objective optimization, and efficient sampling techniques for 
uncertainty analysis.  The pay-off table, a first approximation to Pareto surface, 
results gave an initial indication of similarity between the designs. Finally we 
performed the full-fledged optimization, computed and plotted the trade-offs and 
compared the three surfaces: 1) old stochastic, 2) new deterministic and 3) new 
stochastic. Through this comparison we found a consistent trend of similarity 
between the surfaces of all three cases, more so between the new deterministic 
and new stochastic designs. The agreement between the three surfaces 
especially between the new stochastic and new deterministic proved that through 
the use of these new models, we have identified models with the optimal 
complexity for the system level flowsheet and employing more intricate models 
for the fuel cells would not result in any significant improvement of output 
predictions.  
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