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Abstract: 

Daily process operations are impacted by several short and long-term uncertainties like daily 
fluctuations and seasonal variations in production levels, such as feed compositions or change in 
services quality. In order for the process to handle deviations from nominal condition the effect 
of uncertainties should be adequately incorporated in the conceptual design phase. In addition to 
parametric uncertainties, uncertainty associated with physical properties and process models add 
a difficulty to the design problem. Therefore, classic deterministic design based on information 
at nominal conditions alone may not lead to best process performance in the actual industrial 
plant. In industrial practice overdesign based in engineering judgment aims at increasing the 
robustness of a design.  

Recent progresses in both theoretical approaches as well as computer power have renewed the 
interest of many researchers in academia and industry to explore process design under 
uncertainty with more mathematical rigor. A problem that has not yet been well studied is the 
distinction between process design versus a controlled process design. The usual practice is 
design for the worst-case scenario and in a later stage design a control system to handle the 
uncertainty. This practice usually leads to a robust design but the trade-off between design and 
control is not exploited leading to non-optimal results. Clearly, this viewpoint brings together a 
very important aspect, namely the integration of design and control. Unfortunately little 
systematic control and design of processes under uncertainty is available. Grossmann and co-
workers [e.g. Halemane and Grossmann, 1983; Pistikopoulos and Grossmann, 1988b] introduced 
the concept of integrating design and control to obtain best trade-offs between cost and process 
flexibility considering a steady state assumption. Pistikopoulos and coworkers [e.g. 
Pistikopoulos and Dimitriadis, 1995 and Bansal, Perkins and Pistikopoulos, 2002] have shown 
that considering a steady-state point of view renders an unrealistic control scheme and a dynamic 
analysis is needed.  

In this presentation, we will propose a novel methodology that aim at obtaining best trade-offs 
between design and control decisions in a dynamic view of process control and design. Our 
methodology will include the concept of flexible design of controlled systems under uncertainty. 
We will also demonstrate, with the help of this dynamic approach, that integration of design and 
control at conceptual level yield better cost performance and higher flexibility as compared to 
designs, which consider process control separately. In particular we would like to study the 
impact of periodical uncertainty and the influence of their frequency of occurrence. We will 
compare the advantages and limitations of our methodology to different deterministic and 



probabilistic uncertain design approaches using static-control and illustrate our methodology 
with the help of benchmark case studies.  

 

Methodology 

Our methodology is composed of three specific tasks: 
• Task-1: Dynamic Modeling and Flexibility Concepts 
• Task-2: Solution of Simultaneous Design and Control Problems 

Task-1. Dynamic Modeling and Flexibility Concepts  
We integrate design and control of high performance manufacturing processes according to 

the hierarchical design procedure with three levels of activities summarized in Table 1. In level-
1, transient equation-oriented process models relate state variables to uncertain parameters. The 
mathematical programming framework of level-2 optimizes design and control decisions to 
maximize the joint objectives. Level-3 further refines attractive candidate design solutions to 
determine the optimal production quality standard that ideally matches the customer 
requirements.  

Table 1 – Three-level Hierarchical Procedure for integrated design and control 

Level-1: Dynamic Modeling, Flexibility Concepts and Structural Decisions:  
Identify state variables and formulate conservation laws and first principles. Select design variables,
controls, and characterize uncertainty sources. 

Level-2: Design Optimization:  
Perform Integrated Design and Control Design optimization using the following steps with increasing 
level of complexity: 

• Sampling of the uncertain space 
•  Dynamic Stochastic Optimization of the expected cost 
• Steady state Flexibility  
• Stability  
• Dynamic Flexibility  

Modeling and Structural Decisions  
Basic conservation balances and first principles quantify the dynamics of the physical process. 

The variables in the system equations are then partitioned into four categories: (i) design 
decisions, d, (ii) control decisions, c, (iii) uncertainty sources, θ and ξ as well as (iv) state 
variables, x. 

Design decisions, d. Design variables, d can be divided into discrete structural decisions such 
as the connectivity of physical units, and continuous variables like equipment dimensions or 
operating conditions. In the condenser example, con-current versus counter-current operation 
constitutes a discrete decision. The heat exchanger area belongs to the continuous variable set. 

Control decisions, z and c. For control, two sublevels with increasing detail are proposed. 
Design with perfect control seeks optimal control moves without regard to the controller 
realization. Perfect control trajectories are denoted as z(t) in Figure 1a and are formally known as 
second stage decision variables in operations research [e.g. Infanger, 1991 and 1994]. The 
second layer -implementable control- introduces an actual controller framework, see Figure 1b. 
The implementable control stage fixes a particular control strategy alongside its tuning 
parameters. The control variable set, c, represents alternative controller configurations as well as 
tuning parameters and set-points. It can be regarded as first stage decisions that do not change 
with time.  



 
Perfect Control
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gj (d,x(t),z(t),θ,ξ(t))≤ 0
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Implementable Control
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(a) (b) 
Figure 1 – Variables for Integrated Design and Control (Level-1): (a) Design with Perfect 

Control – (b) Implementable Control (gj: Process and Equipment Constraints – hC: Conservation 
Laws – hCTR: Control Law) 

  
Sources of Uncertainty, θ and ξ. Uncertain variables are categorized into two sets. Static 

uncertain parameters θ are time invariant. They may vary within expected bounds without 
specific pattern in the time domain. All uncertain influences changing periodically in time are 
collected in the set ξ(t). We propose the models listed in Table 2 to represent different types of 
uncertainty.  

 
Table 2 – Categorization of uncertainty sources 

Uncertainty 
Type 

Mathematical Model Example 

Time-invariant 
Uncertainty 

θN±Δθ ,  
Probability Distribution Function 

PDF(θ) 

Parametric uncertainty, model 
uncertainty (e.g. heat transfer 

coefficient) 
Dynamic Periodic 

Uncertainty 
( ) sin( )t A tξ ω φ= ⋅ +  

[ . , . ], [ . , . ]A Alow A high low highω ω ω∈ ∈  
Temperature variations due to 

seasonal or daily changes, etc. 
Non-Periodical 

Uncertainty ( ) ( , )
[ . , . ]

t Function A t
A Alow A high
ξ =

∈  
Sudden variations in feed 

quality (change of feed batch), 
peak load, etc. 

Design Optimization  
Design optimization seeks optimal values for design and control variables within a space of 

uncertain parameters. Numerical optimization algorithms require the discretization of the time 
domain and the uncertain space. Discretization of control and state variables in the time domain 
solves the problem only partially, since the number of uncertain parameter realizations is still 
infinite. However, omitting even a single critical uncertain scenario jeopardizes the rigor of the 
flexibility test. Moreover, seeking critical constraint violations with mathematical programming 
algorithms requires strong convexity assumptions which cannot be guaranteed for the highly 
non-linear integrated design and control problems. Hence, it appears that dynamic flexibility 
design problems are infinitely large and intractable. 

As a remedy, previous research by Imperial College and our group at UIC has lead to a 
successful mathematical programming approach employing problem decomposition and 
uncertainty space sampling techniques [e.g. Bansal et al., 2002; Mohideen et al., 1996; 
Chakraborty and Linninger, 2003]. The decomposition separates the design variable optimization 
from the rigorous dynamic flexibility test. Task-2 will propose solutions to integrated design and 
control with existing numerical optimization algorithms.  

 
 Problem decomposition: We decompose the integrated design and control problem into a 

sequence of an optimal design problem (problem A) followed by a dynamic flexibility test 
(problem B). Problem A seeks optimal design decisions in the time horizon of interest, t=[0,tmax] 



over a specific set of uncertain scenarios, s œ Ω. It probabilistic objective typically includes 
expected operating cost C1(.) as well as capital cost C2(.) of the design d and the control, c. 
Equality constraints, h, include conservational laws and the selected control algorithm, hCTR. 
Inequalities, g, enforce safety, equipment and product constraints at specific instances in time 
(point constraints) or on average in an integral sense. The sample set includes random 
realizations of uncertain parameters, θ, and models for periodic uncertainties, ξ(t), mimicking 
realistic dynamic operating conditions. A probability of occurrence, ωs, weighs the significance 
of each event in the stochastic objective function. The solution of problem A determines optimal 
values of the design and control variable sets.  

 
Critical Scenarios. The optimal design (d, c) obtained with problem A is further examined for 

critical dynamic constraint violations not included in the initial set of samples, s œ Ω. The 
detection of critical scenarios is delegated to the flexibility test problem B, which searches the 
continuous space of uncertain variables. If the flexibility index, δ*, is smaller than unity, critical 
scenarios corresponding to the constraint violations are added to the original sample set, Ω. 
Depending on the nature of the problem (i.e. convexity of the design space, number of active 
constraints, etc.) one or more critical points might be identified. Several iterations between 
design (problem A) and critical scenario search (problem B) may be needed before a design is 
declared optimal and flexible. 

 
Problem A: Optimal Design Problem (Stochastic Optimization Problem) 

( )
max

1 2, , ( ) 0   ( )
Expected Operating cost Capital Cost. .   

min , , ( ), ( ), , , ( , )
t

s s s
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0( , ( ), ( ), ( ), ) 0,             (0)CTRh c x t x t z t t x x= =  Control Algorithm (3)
( , ( ), ( ), , , ) 0             θ ξ ≤ ∀s s
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Problem B: Rigorous Dynamic Flexibility Test Problem (Deterministic Optimization Problem) 

* maxδ δ=dyn  Flexibility Index (5)
s.t. 

[ ]max( ), ( ) 0, 
max min max ( , ( ), ( ), , ( ), )

z tT t t t
g d x t z t t t

θ ξ
θ ξ

∈ ∈
  (6)

{ }/ N NT θ θ δ θ θ θ δ θ− += − Δ ≤ ≤ + Δ   (7)
Constraints (2)-(4) of problem A   



 

Task 2- Solution of the Simultaneous Design and Control Problems 
The integrated design and control problem will be decomposed into smaller sub-problems for 

its numerical solution. Figure 2 suggests a hierarchy of increasing level of complexity, for 
ensuring a gradual refinement of the design from simple to harder problems. First, sampling (2.1) 
discretizes the infinite uncertain space. A stochastic dynamic mathematical program defined over 
the finite sample set optimizes design and control decisions for minimum expected cost (2.2). 
The preliminary optimal design is then examined for critical scenarios in the whole uncertain 
space by a deterministic flexibility procedure (2.3). We propose to establish feasibility for steady 
state conditions first. Critical scenarios causing failure are added to the sample set and the design 
is optimized again. Flexible steady systems are 
tuned to ensure dynamic stability (2.4) by suitable 
control adjustments or if unsuccessful by re-
designed. Stable systems are submitted to a 
dynamic flexibility test (2.5) to identify transient 
constraint violations. Critical dynamic scenarios 
are added to the uncertainty samples. Repeated 
iterations through the hierarchy progressively 
narrow the search space with the goal of arriving at 
an integrated design with minimum expected cost 
and dynamic flexibility.  
 
Uncertain Space Discretization. Parameter 
uncertainty introduces another infinite dimension 
to the continuous time dynamic optimization 
problem. We propose scenario sampling for 
converting the infinite uncertain space into a 
discrete mathematical form. The decomposition of 
the uncertain space provides a simple method to 
compute expected performance. We have successfully reduced the design space for synthesis of 
separation flowsheets by using stratified sampling techniques [Chakraborty and Linninger, 
2003]. Bootstrapping techniques determined the necessary sample sizes. The size reductions 
gained by this scheme render acceptable accuracy at reasonable computational effort. 
Alternatively some researchers report success in modeling the uncertain space with global multi-
dimensional integration methods [Pistikopoulos and Grossmann, 1988a]. 
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Optimal Design for 
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State Flexibility Test

Rigorous Dynamic 
Stability Test

Rigorous Dynamic 
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θ, ξ(t)

d, c

g(d, c)≤ 0

θNEW

δ*
ss≥ 1

δ*
ss< 1

Stable

δ*
dyn≥ 1

δ*
dyn< 1

Unstable

Dynamic Critical 
Scenarios

Static Critical 
Scenarios

Additional d & 
c constraints

θNEW, 
ξNEW(t)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Min Cost Integrated Design  
Figure 2 –Proposed Integrated Design and 

Control Methodology (Level 2) 

 
Time Discretization. We will investigate two alternative numerical solutions strategies as 

depicted in Figure 3: Global discretization and Control Vector Parameterization. The problem 
decomposition makes it amenable to dedicated solution algorithms. Discretization of the time 
domain on finite elements with orthogonal polynomials converts the differential algebraic 
constraints into a set of algebraic equations defined on discrete collocation nodes [Villadsen and 
Michelsen, 1978, Biegler, 1984]. This global discretization method substantially reduces the 
problem size and transforms a dynamic optimization problem into a Non-linear Program (NLP or 
MINLP) for which state-of-the-art algorithms are available. We intend to explore advanced 
MINLP solvers such as BARON [2005], DICOPT [Kocis and Grossmann, 1989] or MINOPT 
[2005]. Further problem size reduction is possible by dynamically adjusting length, number and 



order of the finite elements [Tanartkit and Biegler, 1995]. Successful applications in design 
problems under uncertainty are documented in the open literature [Zhang et al., 2004]. 

 Alternatively, the system of dynamic constraints (DAE) 
can be integrated with specialized variable step-size 
routines. The master optimization program performs 
branching and bounding on top of a gradient-based search 
to adjust design variables and the discrete set of control 
actions. This technique known as control vector 
parameterization delegates the accurate evaluations of the 
state variable trajectories  to a DAE integrator routine such 
us DASPK [2005], DAEPACK [2005] or DASOLV [Jarvis 
and Pantelides, 1993]. We have also successfully 
integrated numerical DAE solvers into large-scale non-
linear programs to solve dynamic kinetic inversion problems [Tang et al., 2005].  

Dynamic Optimization 
Problem

(MI)NLP
Solver

DAE
Solver

Full 
discretization

(OCFE)
Parameters 
p={d,c,z(t)} x(t), ( )dx t

dp
x(t), ( )dx t

dp

(MI)NLP
Solver

Parameters p
Collocated States x(k)

 
Figure 3 - Different approaches 

to solve a dynamic optimization 
problem 

 
Stability. While system performance is optimized on a finite time horizon as described above, 

the joint design and control system should be stable. However, asymptotic stability criteria for 
non-linear dynamic systems are mathematically difficult to solve. Several authors have made 
contributions to test stability of general dynamic processes [e.g. Kokossis and Floudas, 1994ab; 
Vidyasagar, 2002; Mönnigmann and Marquardt, 2003]. A recent alternative stability 
determination developed by Ydstie based on the process entropy will also be explored for its 
suitability in integrated design [Alonso et al., 2002]. We propose two avenues to examine 
dynamic stability: (i) the first one is based on matrix metrics of the Jacobian [Vidyasagar, 2002]; 
(ii) and alternative route would ensure that the system has reached steady within an open final 
time problem.  

 
 Identification of Critical Scenarios. A key 

requirement for justifying uncertainty analysis with 
advanced mathematical methods is its rigor in 
identifying critical scenarios. We have found that 
existing approaches [e.g. Bansal et. al, 2002] fail to 
identify whole families of worst case scenarios 
related to constraint violations caused by critical 
disturbance frequencies. To illustrate the risk of 
these disturbance frequencies, a VOC condenser 
was subjected to periodical inputs of known 
amplitude but varying frequencies. Using the 
proposed methodology a critical frequency of 
coolant temperature oscillations was computed 
rigorously. This frequency-critical worst-case 
scenario led to larger overshoots than any series of step changes of equal magnitude as displayed 
in Figure 4. This phenomenon is known as critical resonance and can cause failure. Approaches 
to find all "transient" critical scenarios for robust dynamic processes design are currently missing 
and will be addressed in this research. We propose to engage lower order surrogates in order to 
detect potential disturbance resonances. 
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 Significance 

Currently, chemical process design and control are separate disciplines assisting process 
development at different stages. Design and control decisions are made independently despite the 
common aim of ensuring robust plant operations. The lack of confidence in existing methods is 
underscored by the industrial practice of process overdesign without ascertaining the actual level 
of robustness or controllability. A systematic framework for simultaneous process and control 
system design does not exist yet.  

We adopt an integrated view of process control and design decisions under realistic dynamic 
operating conditions. We create a concise decision-making hierarchy allowing designers to arrive 
at key structural decisions for the process flowsheet and control layout. Rigorous mathematical 
programming approaches are proposed for optimizing parametric design variables as well as 
structural alternatives.  

Our work foresees an inductive exploration of different types of uncertainty such as model 
uncertainty, physical parameter uncertainty, varying product demand, operational and external 
disturbances. We suggest a systematic classification of the functional time-dependency and 
periodicity of uncertainty sources. The methodology incorporates advanced control options such 
as non-linear Model Predictive Control or RTDA controller technique developed by the Co-PI 
[Ogunnaike and Mukati, 2004; Mukati and Ogunnaike, 2004].  
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