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Abstract: A large number of natural and technological processes involve mass transfer at 
interfaces. Interfacial properties, e.g., adsorption, play a key role in such applications as 
wetting, foaming, coating, and stabilizing of liquid films. The mechanistic understanding of 
surface adsorption often assumes molecular diffusion in the bulk liquid and subsequent 
adsorption at the interface. Diffusion is well described by Fick’s law, while adsorption kinetics 
is less understood and commonly described using Langmuir-type empirical equations. In this 
study, a general theoretical model for adsorption dynamics at the air-liquid interface is 
developed where a new kinetic equation based on the Statistical Rate Theory (SRT) is 
derived. The present model of adsorption dynamics is governed by three dimensionless 
numbers: ψ (ratio of adsorption thickness to diffusion length), λ (ratio of square of the 
adsorption thickness to the ratio of adsorption to desorption rate constant), and Nk (ratio of 
the adsorption rate constant to the product of diffusion coefficient and bulk concentration). 
Numerical simulations for surface adsorption using the proposed model are carried out. The 
difference in surface adsorption between the general and the diffusion controlled model is 
estimated and presented graphically as contours of deviation. Three different regions of 
adsorption dynamics are identified: diffusion controlled (deviation less than 10%), mixed-
diffusion-transfer controlled (deviation in the range of 10 – 90%), and transfer controlled 
(deviation more than 90%). These three different modes predominantly depend on the value 
of Nk. The corresponding ranges of Nk for the studied values of ψ (10-2<ψ<104) and λ (10-

12<λ<108) are: 101<Nk<104 for the diffusion controlled, 10-3<Nk<101 for the mixed-diffusion-
transfer controlled, and 10-4<Nk<10-3 for the transfer controlled, respectively.  
 
1. Introduction 
 
 

The surface tension of a freshly formed interface of any solution containing a surface 
active component is very close to that of the pure solvent. With time, the surface tension 
decreases as the surface active component adsorbs at the interface. This time dependent 
surface tension is known as the dynamic surface tension (DST). The dynamic surface tension 
is an important property; it governs many interfacial processes of practical interest [1-2], 
including wetting, foaming, coating, stabilizing of liquid films [3], enhanced oil recovery [4], 
breathing [5-6], nerve conduction, and transfer across cell membranes [5].  

 
Since the pioneer work of Ward and Tordai [7] in the 1940s, the kinetics of adsorption 

at the interface has been a focus of surface science research [8-10]. It is well known that the 
adsorption of a component from a liquid bulk phase to an air-liquid interface generally 
includes three steps: (i) transport of the component from the bulk phase to the “subsurface”,  
immediately adjacent to the interface (surface); (ii) transfer of the component from the 
subsurface to the surface; and (iii) rearrangement of the adsorbed component into an 
equilibrium state [8]. The rate-determining step for adsorption can be either one of the above 
three steps. Accordingly, the adsorption kinetics is said to be diffusion controlled, transfer 
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controlled or rearrangement controlled, depending on whether step (i), (ii) or (iii) is the rate 
limiting step, respectively. The adsorption kinetics is mixed-diffusion-transfer controlled when 
steps (i) and (ii) are equally important. Currently, most of the theoretical models have been 
developed using the following two mechanisms: diffusion controlled [9-12] and mixed-
diffusion-transfer controlled [13-17]. Rearrangements at the surface may consist of 
reorientation, conformational changes, complex formation, chemical reactions, phase 
transitions or formation of three-dimensional structures resembling liquid crystals. For small 
molecules, rearrangement is generally a very fast process and has little effect on the overall 
behavior of adsorption [5, 18].  

 
The diffusion controlled model of adsorption dynamics is often used for the description 

of the dynamic surface tension data, which are often obtained by measuring surface tension 
with a pendant drop (or bubble). The solution of Ward and Tordai for diffusion controlled 
adsorption was developed for a planar interface. An analogous solution was obtained by Lin 
et al. [13], where adsorption to a bubble was considered and the bubble shape was 
approximated as a spherical interface. Ferri et al. [12] reported that the geometry of the 
interface significantly affects the adsorption. Adsorption to a spherical interface is faster than 
that of a planar interface for a bubble, whereas, for a pendant drop, the adsorption to a 
spherical interface is slower than that of a planar interface [13, 19]. 

 
The transfer process, i.e., step (ii) above, is important when a sufficiently large 

activation energy exists [19]. In such cases the mixed-diffusion-transfer controlled model 
must be considered, and hence an appropriate transfer kinetic equation is necessary [19]. 
Most of the kinetic equations used were based on the Arhenius rate formulation using an 
activation energy. These equations are empirical, and the constants involved are evaluated 
by fitting to experimental data. There are considerable uncertainties in the estimating of these 
empirical constants [19]. Although these equations can be used by adjusting the empirical 
parameters or adding more empirical parameters in describing transfer kinetics, the research 
thrust in obtaining a better transfer equation based on the first physical principles was 
pinpointed. The transfer equation based on the Statistical Rate Theory (SRT) has been 
developed by Chen & Neumann [20]. The SRT is based on quantum mechanics and 
thermodynamics. The SRT transfer equation involves less empirical assumptions, and the 
rate constants can be evaluated from the theory. 

 
The overall objective of this paper is to formulate a general model for adsorption of 

molecules at the air-liquid interface. Both diffusion in the liquid bulk and transfer at the 
surface are considered. The transfer equation is derived based on SRT, which is a 
modification of Chen & Neumann’s equation [20]. The paper is structured as follows: Section 
2 describes the theoretical aspects of diffusion and the transfer kinetic process. In Section 3, 
the governing equations for adsorption dynamics are written in dimensionless form. The 
approach to the numerical solution is also discussed. Section 4 discusses the simulation 
results from both the diffusion controlled and the mixed-diffusion-transfer controlled model. 
Key conclusions are summarized in Section 5. 
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2. Theoretical aspects 
 
 
 The adsorption of molecules from a liquid bulk to an air-water interface is modeled 
using a two-step process: diffusion of the molecules from the bulk to the sub-surface, and 
transfer of the molecules from the sub-surface to the air-water interface. Since for many small 
molecules, rearrangement at the surface is fast, possible effects of step 3 on the overall 
adsorption are ignored here.  
 
2.1 Diffusion equation 
 
 

One-dimensional diffusion of the molecules from the bulk of the pendant drop to the 
sub-surface is assumed. The bulk liquid contains a surface active material with a uniform 
initial concentration. The geometry of the pendant drop is approximated as a sphere. The 
diffusion is assumed to be spherically symmetrical and is described by the Fick’s second law 
[14-17]: 
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where r is the spherical radial coordinate, t the time, D the diffusion coefficient, C the bulk 
concentration, Γ the surface concentration, rs the drop radius, Co the initial bulk concentration, 
and Γo the initial surface coverage. Ideally, for a fresh pendant drop the initial surface 
coverage should be zero; however, during the creation of the drop a small amount of 
molecules may appear at the surface.  
 
2.2 Transfer equation 

 
 

To complete the description of the model, the transfer of molecules from the sub-
surface to the surface must be specified. The transfer equation derived from the Statistical 
Rate Theory (SRT) for ideal surface condition is given in [19, 22, 25].  
 
The general form of the kinetic equation derived from the Statistical Rate Theory (SRT) can 
be written as follows: 
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where ka and kd are the adsorption and the desorption rate constant, respectively, fV and fA 
are the activity coefficients of the bulk and the surface, respectively, Cs is the sub-surface 
concentration, ∞Γ  is the maximum surface concentration, k is the Boltzmann constant, T is 
the temperature, and π is the surface spreading pressure, defined as π=γo-γ, where γo and γ 
are the solvent and solution surface tensions, respectively.  
 
For a surfactant molecule below its critical micelle concentration, the bulk solution can be 
approximated as ideal and hence fV is considered as unity and Eq (3) becomes, 
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Equation (4) is an implicit transfer kinetic equation with respect to the surface concentration 
because surface spreading pressure is also a function of surface concentration. In order to 
obtain an explicit transfer kinetic equation, a surface equation of state that relates surface 
pressure to surface concentration and an expression for the surface activity coefficient are 
needed. Equation (4) is a general kinetic equation and is valid for both ideal and non-ideal 
surfaces. For non-ideal surfaces an expression for surface activity coefficient is required. For 
an ideal surface the surface activity coefficient is taken to be unity and Equation (4) becomes,  
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 Equation (5) is the SRT kinetic equation for an ideal surface. In order to solve this 
transfer kinetic equation, a surface equation of state that relates surface pressure to surface 
concentration is needed. One of the extensively used surface equations of state is as follows 
[2, 7]:  
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Substitution of Equation (6) into Equation (5) gives  
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where K= ka/kd 
 

Equation (7) is the final form of the transfer kinetic equation based on the Statistical 
Rate Theory. This equation consists of two parts: adsorption and desorption. The adsorption 
is directly proportional to the bulk concentration and the available empty sites at the interface, 
but inversely proportional to the surface concentration. The desorption is inversely 
proportional to the bulk concentration and the available empty sites at the interface, but 
directly proportional to the surface concentration. The adsorption and desorption rate 
constants of Equation (7) are not empirical and can be estimated from independent 
theoretical considerations, as detailed elsewhere [20, 22].  
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At equilibrium, when the rate of change in surface concentration vanishes, any transfer 
kinetic equation should appropriately reflect an equilibrium isotherm. This is illustrated by 
setting J=0 in Eq. (7) and the equilibrium isotherm becomes, 
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Equation (8) is the Lamgmuir type isotherm where b is the equilibrium constant. It is thus 
interesting to note that although the transfer kinetic equation, Eq. 7, is completely different 
from the Langmuir type kinetic equation, the two isotherms are the same.  
 
3. Dimensionless equations and numerical schemes 
3.1 Dimensionless equations 
 
 

For convenience in mathematical treatments and numerical solutions, the governing 
equations have been rewritten in terms of dimensionless parameters: 
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where C* is the dimensionless concentration, ξ the dimensionless distance, Γ* the 
dimensionless surface concentration, τ the dimensionless time, and h defined as Γ∞/C0. 
Thus Eq. (1) becomes 
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The B.C., Eq. (2), becomes: 
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The transfer kinetic Equation (7) becomes 
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where λ ≡ h2/K and Nk ≡ ka/DCo          (14) 
 
The equilibrium isotherm Eq. (8) becomes 
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where α=b/Co and λ=α2      
 
The non-dimensional equations (10) and (13) involve three dimensionless numbers ψ≡h/rs, 
((h2/K, and Nk(ka/DCo. The physical significance of each of these dimensionless numbers is given in 
[22]. Ranges of each of the dimensionless numbers are shown in Table 1. 
 
 
                      Table-1: Ranges of three dimensionless numbers 
 

Parameter Lower limit Upper limit 

( 1.0x10-5 
 

1.0x105 

 
λ 1.0x10-14 1.0x1010 

Nk 1.0x10-5 1.0x106 

 
 
3.2 Numerical solution methods 

 
 
When the overall adsorption process is controlled by bulk diffusion, the surface 

concentration can be obtained by solving Eq. (10) and Eq. (15). In this case, Nk → ∞, and the 
entire adsorption dynamics is described by two dimensionless numbers, ψ and λ. If the 
adsorption process is mixed-diffusion-transfer controlled, Eq. (10) and Eq. (13) need to be 
solved simultaneously to obtain the surface concentration. In the mixed-diffusion-transfer 
model the dynamics is described by all three dimensionless numbers, ψ,  λ, and Nk. 

 
Equations 10-15 are inhomogeneous and nonlinear, precluding an analytical solution. 

It is thus necessary to employ numerical methods to solve the system of equations. Different 
numerical techniques, including integral, finite difference and finite element methods, have 
been reported in the literature [11-13, 19]. The numerical package gPROMS (Process 
Systems Enterprise Ltd.,UK) has been used for the simulation [24]. Details of the numerical 
methods were given in [22]. 

 
The numerical simulation is carried out in the following sequence: (i) First, a detailed 

simulation is carried out by varying the dimensionless numbers (ψ, λ) within the regime of the 
diffusion controlled dynamics (e.g., Nk →∞); (ii) Second, a detailed simulation is carried out by 
varying all three dimensionless numbers (ψ, λ and Nk) for the case of mixed-diffusion-transfer 
model; (iii) Finally, the difference between results of the mixed-diffusion-transfer and the 
diffusion controlled model is calculated. 

 
4. Results and discussion 
4.1 Effect of dimensionless parameter  
  

Effect of ψ: Figure 1 shows the dimensionless surface concentration plotted against 
the dimensionless time for a wide range of ψ at a constant value of λ=10-6. Figure 1 
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represents one of the many similar plots obtained from the detailed simulations for the 
diffusion controlled model. The plots in Figure 1 show that the surface concentration 
increases with decreasing the value of ψ at a constant value of λ. When ψ is decreased to  
10-2, surface adsorption reaches a maximum (curve d) and a further decrease of ψ to 10-3 
(curve e) does not increase the surface concentration further. This indicates that the effect ψ 
on surface adsorption is negligible for ψ below 10-2. Similar effects of ψ on surface adsorption 
are found for all other values of λ. 

 
 

 
 

Figure 1  Evolution of dimensionless surface concentration with dimensionless time for 
diffusion controlled dynamics at a constant λ=10-6 for various values of (a) ψ = 101, (b) ψ = 
1.0, (c) ψ = 10-1, (d) ψ=10-2, and (e) ψ =10-3.  
 

 
Effect of λ: Figure 2 plots the dimensionless surface adsorption against the 

dimensionless time for different values of λ at a constant value of ψ=10-1. Similar plots are 
obtained from the simulations for other values of ψ. It is observed in Figure 2 that decreasing 
λ increases the surface adsorption. This increase in equilibrium surface adsorption is due to 
the higher equilibrium adsorption constant (K). In Figure 2, the surface adsorption reaches a 
maximum when λ attains a value of 10-8 (curve g). Below this value of λ, further decrease in λ 
does not change the surface adsorption. This is shown in curves g, h and i corresponding to 
λ equal to 10-8, 10-10, and 10-12, respectively, in Figure 2, where these curves are 
indistinguishable. The value of λ below which no further increase in surface adsorption 
occurs differs for different values of ψ.  
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Figures 1 and 2 reveal that the surface concentration increases with time towards a 

plateau value. The magnitudes of surface concentrations at the plateau are taken as the 
equilibrium surface concentrations. The equal surface concentration for a particular value of 
ψ can be obtained from different values of λ. Among these series of λ values, one can use 
any value of λ to obtain the same maximum surface concentration at a particular ψ. As 
mentioned earlier, the decrease in λ increases the surface concentration, and there is a 
limiting λ value below which surface concentration does not increase further.  
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Figure 2  Evolution of dimensionless surface concentration with dimensionless time for 
diffusion controlled dynamics at a constant ψ=10-1 for various values of (a) λ=104, (b) λ=102, 
(c) λ=1.0, (d) λ=10-2, (e) λ=10-4, (f) λ=10-6, (g) λ=10-8, (h) λ=10-10, and (i) λ=10-12.  
 

 
 

4.2 Simulation of adsorption dynamics using the mixed-diffusion-transfer model 
 
 
Numerical solutions to the mixed-diffusion-transfer model have been reported in the 

literature where a diffusion equation and an empirical Langmuir type kinetic equation were 
used [2, 11, 14-17, 23, 25-26]. In all cases, experimental surface tension data were fitted to 
the model by adjusting fitting parameters. However, in the present study, numerical 
simulations are carried out in terms of the three dimensionless numbers. Values of these 
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dimensionless numbers for different modes of adsorption kinetics can be obtained from a 
given experimental system. 

 
As mentioned earlier, the mixed-diffusion-transfer controlled model requires 

specification of all 3 dimensionless numbers for describing the adsorption dynamics. Like the 
diffusion controlled model where simulations are carried out by varying one dimensionless 
number while fixing the other, the simulation of the mixed-diffusion-transfer model are carried 
out by fixing two numbers (ψ and λ) while varying the third number (Nk).  
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Figure 3  Evolution of dimensionless surface concentration with dimensionless time for 
mixed-diffusion-transfer controlled adsorption dynamics at constant values of ψ=10-1 and 
λ=10-8, for various values of Nk (a) Nk=10-4, (b) Nk=10-3, (c) Nk=10-2, (d) Nk=10-1, (e) Nk=1.0, 
(f) Nk=101, (g) Nk=102, (h) Nk=103, (i) Nk=104, and (j) diffusion-controlled result (Nk= ∞). 
 

 
Figure 3 is one of the typical results, where the dimensionless surface concentration is 

plotted against the dimensionless time for fixed values of ψ=10-1 and λ=10-8 but different 
values of Nk. In the same graphs, the result for the diffusion controlled model (Nk→∞) using 
the same values of ψ and λ is plotted for comparison. Figure 3 shows that the dynamics of 
surface adsorption is accelerated as Nk increases. As mentioned earlier, an increase in Nk 
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means an increase in adsorption rate constant, ka, at constant ψ and λ, and hence speeding 
up of the adsorption process. Figure 3 also reveals that when Nk becomes larger than 100, 
the curves of dimensionless surface adsorption (curves g, h and i) become indistinguishable 
from that of the diffusion controlled case (curve j). It is observed that although the upper 
range of Nk is estimated to be 106 in Table-1, in practice, the surface concentration coincides 
with that of the diffusion-controlled when Nk is equal to or greater than 102 at ψ=10-1 and 
λ=10-8.  
 
 
4.3  Comparison between the mixed-diffusion-transfer model and the diffusion 

controlled model 
 
 
Calculation of deviations: The surface concentration obtained from the solution to the 
mixed-diffusion-transfer model is compared, at each time, with that of the diffusion controlled 
model. For each pair of  ψ and λ, Nk varies over its entire range of values. The deviation of 
the mixed-diffusion-transfer model solution from the diffusion controlled for a fixed pair of ψ 
and λ is computed as a function of dimensionless time. The computed deviation is then 
normalized using the equilibrium dimensionless surface concentration of the diffusion 
controlled solution. The maximum normalized deviation can be calculated through the 
following equation: 
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where d(Nk,ψ,λ) is the percent deviation at fixed values of ψ, λ and Nk, i denotes a point in 
dimensionless time, and ),(*

eq λψΓ is the equilibrium surface concentration for fixed values of 
ψ and λ Table 2 lists typical results from Eq. 16.  
 
 
Table-2: Estimated maximum percent deviations at ψ=10-1 as a function of Nk and λ 

λ         Nk 
 

 
104 

 
103 

 
102 

 
101 

 
1 
 

10-1 
 

10-2 
 

10-3 
 

10-4 
 

10-12 0.2024 0.9384 3.9037 14.0492 38.1139 68.3146 87.6778 95.7952 98.6354
10-10 0.1406 0.8693 3.8344 13.9801 38.0450 68.2461 87.6174 95.7753 98.6198
10-8 0.0564 0.5996 3.5316 13.6773 37.7453 67.9938 87.4484 95.6535 98.5398
10-6 0.0223 0.2264 2.4166 12.4234 36.4975 66.9070 86.6682 95.1464 98.2277
10-4 0.0078 0.0783 0.8367 8.1734 31.8817 62.8213 83.7604 93.3593 97.2176
10-2 0.0049 0.0252 0.2510 2.6773 19.8628 51.2375 75.5771 88.6908 95.0140

1 0.0007 0.0084 0.0860 0.8831 8.3813 33.5028 61.2735 80.0232 90.6497
102 0.0006 0.0053 0.0528 0.5375 5.2266 24.5493 50.8960 71.5231 84.3796
104 0.0076 0.8302 0.0503 0.4974 4.8232 23.0883 48.9071 69.4887 82.5604
106 0.1407 0.1409 0.1435 0.4485 3.8774 22.0978 49.1380 69.4065 82.3517
108 0.8826 0.8835 0.8922 0.9784 1.8321 10.8758 38.2093 66.3650 83.7471
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Figure 4  Three dimensional contours of normalized deviation showing all three 
dimensionless numbers (A) continuous volume plot (B) scatter plot.  
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3-D contours: Figure 4(a) shows a 3-dimensional volume contour plot of the percent 
deviation. The X, Y and Z coordinates represent the three independent parameters λ, Nk, and 
ψ, respectively, in log scales. The color code represents the percentage of deviation, varying 
from blue (less than 5%) to red (more than 90% deviation). Figure 4(b) gives the scatter plot 
of Figure 4(a). It is shown that for all values of ψ and λ, the deviation is low at high Nk values, 
and high at low Nk values. This reveals that Nk is a predominant number. Figure 4 identifies 
different regions of the adsorption dynamics using the following criteria: diffusion-controlled if 
the deviation is less than 10%; mixed-diffusion-transfer controlled if the deviation is between 
10 and 90%; and transfer-controlled if the deviation is more than 90%. Accordingly, it can be 
found that the dynamics becomes diffusion controlled for 101<Nk<104, mixed-diffusion-
transfer controlled for 10-3<Nk<101, and transfer controlled for 10-4<Nk<10-3, for all values of ψ 
(10-2<ψ<104), and λ (10-12<λ<108). 
 
 
5. Conclusions 
 
 

• A mathematical model for adsorption from a liquid solution to an air-water interface 
was developed, where the transfer kinetic equation was based on the Statistical Rate 
Theory (SRT). This kinetic equation has a different functional form than those of the 
literature reported kinetic equations.  

• The model was described using three dimensionless numbers ψ (ratio of adsorption 
thickness to diffusion length), λ (ratio of square of the adsorption thickness to the ratio 
of adsorption to desorption rate constant), and Nk (ratio of the adsorption rate constant 
to the product of diffusion coefficient and bulk concentration). 

• Increase in surface adsorption and consequently reduction in surface tension is 
maximum for low values of ψ and λ. The limiting value of ψ, below which surface 
adsorption does not increase further, is 10-2 for 10-12<λ<108. 

• Deviations between the solution to the mixed-diffusion-transfer and the diffusion 
controlled model were calculated and presented as contour plots. Three different 
regions of adsorption dynamics were identified: diffusion controlled (deviation less than 
10%) for 101<Nk<104, mixed-diffusion-transfer controlled (deviation in between 10 – 
90%) for 10-3<Nk<101, and transfer controlled (deviation more than 90%) for 10-

4<Nk<10-3, respectively, for all ψ (10-2<ψ<104), and λ (10-12<λ<108). 
• The modes of adsorption kinetics can be predicted predominantly by estimating the 

magnitude of Nk. This can be very useful in designing an experiment of a particular 
kinetics. 
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