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Abstract

Efficient management of inventory in supply chains is critical to the profitable operation of modern
enterprises. The supply/demand networks characteristic of discrete-parts industries such as semicon-
ductor manufacturing represent highly stochastic, nonlinear, and constrained dynamical systems whose
study merits a control-oriented approach. Model Predictive Control (MPC) is presented in this paper
as the basis for a novel inventory management policy for supply chains whose dynamic behavior can
be adequately represented by fluid analogies. A Simultaneous Perturbation Stochastic Approximation
(SPSA) optimization algorithm is presented as a means to obtain optimal tuning parameters for the
proposed policies. The SPSA technique is capable of optimizing important system parameters, such as
safety stock targets and/or controller tuning parameters. Two case studies are presented. The results of
the optimization on a single-echelon system show that it is advantageous to act cautiously to forecasted
information and gradually become more aggressive (with respect to factory starts) as more accurate
demand information becomes available. For a three-echelon problem, the results of the optimization
demonstrate that safety stock levels can be significantly reduced and financial benefit gained while
maintaining robust operation in the supply chain.

1To whom all correspondence should be addressed. phone: (480) 965-9476 fax: (480) 965-0037; e-mail:
daniel.rivera@asu.edu



1 Introduction

More effective operation of supply chains for manufactured goods is worth billions of dollars to our na-
tional economy (ASCET, 2003). While a generic supply chain stretches from suppliers through manufac-
turing to customers, one of the most promising areas for improvement lies in the generation and execution
of the plans for the factories that form the backbone of all such supply chains. In this context, improved
inventory management plays a critical role in plans that 1) effectively allocate factory capacity to make
the right product at the right time, avoiding wasting capacity on products that may later be discarded,
and 2) reduce activities that are undesirable to operations, such as excessive variability in factory starts
(“thrash”) and setups. Ultimately, improving inventory management leads to lower manufacturing costs
while maximizing revenue and improving customer satisfaction.

This paper is focused on how to effectively tune decision policies inspired from process control for
supply chain inventory management problems in uncertain, stochastic environments, as is typically the
case in industrial practice (Kempf, 2004). Material flows in manufacturing supply chains can be modeled
using a fluid analogy. This analogy provides a basis for tactical decision policies based on process control
principles. A fluid representation of a three-echelon supply chain as seen in semiconductor manufacturing
and its corresponding inventory locations is shown in Figure 1. Here the manufacturing nodes are repre-
sented as “pipes”, while the warehouse nodes are represented as “tanks”. Material in these pipes and tanks
correspond to Work-in-Progress and inventory, respectively.
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Figure 1: Fluid representation for a representative three-echelon supply chain based on semiconductor
manufacturing.



Specifically, in this paper we consider Model Predictive Control (MPC) (Camacho and Bordons,
1999; Garcı́a et al., 1989) as a decision policy that can provide improved performance in manufactur-
ing systems with long throughput times and significant uncertainty, such as semiconductor manufactur-
ing (Kempf, 2004; Wang et al., 2004). As control-oriented frameworks, MPC-based decision policies
have the advantage that they can be tuned to provide acceptable performance in the presence of significant
supply and demand variability and forecast error as well as constraints on production, inventory levels,
and shipping capacity.

The ultimate objective of this paper is to present a simulation-based approach for optimally tuning
these policies in a stochastic environment using the concept of Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) (Spall, 2003). The first scenario involves optimal tuning of a single node system
under uncertain demand. In this case, the SPSA algorithm acts to maximize profit by optimizing over
a range of move suppression values within the move calculation horizon. The second scenario involves
determining both the optimal move suppression and inventory targets for a three echelon system involving
stochastic yield, long throughput times, and uncertain demand. For this scenario, the algorithm maximizes
profit by optimizing over the target value for each inventory node and the move suppression values that
penalize changes in starts for each production node. In the second scenario move suppression values are
constant across the move horizon, but there is a distinct weight assigned for each factory.

The paper is organized as follows. Section 2 is concerned with MPC-based tactical decision policies
that are optimal with respect to linear time-invariant models derived using fluid analogies. Section 3 de-
scribes the SPSA optimization method that will seek optimal tuning and targets of the MPC policies when
placed in a stochastic environment. Section 4 presents the results of applying SPSA for the previously
described scenarios, with the results yielding some fundamental insights into the proper selection of in-
ventory targets and tuning of the decision policies. A summary of the work and resulting conclusions are
discussed in Section 5.

2 Model Predictive Control as a Tactical Decision Policy

Model Predictive Control (MPC) stands for a family of methods that select control actions based on on-
line optimization of an objective function. MPC has gained wide acceptance in the chemical and other
process industries as the basis for advanced multivariable control schemes (Camacho and Bordons, 1999;
Garcı́a et al., 1989). In MPC, a system model and current and historical measurements of the process
are used to predict the system behavior at future time instants. A control-relevant objective function is
then optimized to calculate a sequence of future control moves that must satisfy system constraints. The
first predicted control move is implemented and at the next sampling time the calculations are repeated
using updated system states; this is referred to as a Moving or Receding Horizon strategy. Figure 2 is
a useful visualization of the MPC approach. As shown, a demand forecast signal is used in the moving
horizon calculation to anticipate future system behavior, which plays a significant role in the use of MPC
for supply chain applications.
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Figure 2: Receding horizon representation of Model Predictive Control.

There is significant flexibility in the form of the objective function that can be used in MPC; a mean-
ingful formulation for the inventory management problems considered in this paper is as follows:

min
∆u(k|k)...∆u(k+m−1|k)

J (1)

where the individual terms of J correspond to:

Keep Inventories at Inventory Planning Setpoints

J =

︷ ︸︸ ︷
p

∑
`=1

Qe(`)(ŷ(k + `|k)− r(k + `))2 (2)

Penalize Changes in Starts

+

︷ ︸︸ ︷
m

∑
`=1

Q∆u(`)(∆u(k + `−1|k))2

subject to constraints on inventory capacity (0≤ y(k)≤ ymax), factory inflow capacity (0≤ u(k)≤ umax),
and changes in the quantity of factory starts (∆umin ≤ ∆uk ≤ ∆umax).

Equation 2 is a multi-objective expression that addresses the main operational objectives in the supply
chain. The first term is a setpoint tracking term that is intended to maintain inventory levels at user-
specified targets over time. The second term is a move suppression term that penalizes changes in the
starts. Penalizing changes in the starts rate is not only desirable from the standpoint of factory operations,
it also serves an important control-theoretic purpose, as a mechanism for introducing robustness in the
control system in the face of uncertainty (Garcı́a et al., 1989). The emphasis given to each one of the
sub-objectives in (2) (or to specific system variables within these objective terms) is achieved through the
choice of weights (Qe(`) and Q∆u(`)). These can potentially vary over the move and prediction horizons
(m and p, respectively).



MPC control of a fluid representation of the three-echelon semiconductor manufacturing supply chain
described in the Introduction and shown in Figure 1 is as follows: controlled variables y for the problem
in Figure 1 consist of the three inventory levels (I10, I20 and I30). The starts rates for the production nodes
(C1, C2 and C3) represent manipulated variables in this problem formulation, while demand is treated
as a disturbance signal. The demand signal (which dictates the shipment flow in C4) consists of two
components: 1) actual demand (which is only fully known after the fact) and 2) forecasted demand, which
is provided to the planning function by a separate organization. For the problem in Figure 1 the mass
conservation relationship for I10 can be written as:

I10(k +1) = I10(k)+Y1 C1(k−θ1)−C2(k) (3)

where θ1 and Y1 represent the nominal throughput time and yield for the first production node, respec-
tively, while C1 and C2 represent the daily (or per-shift) starts that constitute inflow and outflow streams
for I10 and M10. Similar relationships to (3) can be written for the other inventory nodes, I20 and I30.

3 Simulation-Based Optimization using SPSA

The previous section showed the development of controllers that are based on nominal linear models, but
will be implemented in uncertain, stochastic settings. To achieve optimality in a stochastic setting, it is
necessary to add a second optimization layer. We propose a simulation-based optimization scheme that
will seek optimality under the effects of stochastic yield, varying throughput times, and an erroneous,
autocorrelated demand forecast signal. The Simultaneous Perturbation Stochastic Approximation (SPSA)
method is a promising approach that has received considerable attention over the last decade. The method
has been used for statistical parameter estimation, model fitting, adaptive control, and many other appli-
cations (Spall, 2003).

Simulation-based optimization algorithms are generally applied to problems where a closed-form rela-
tionship between the parameters being optimized and the objective function is unknown. This may be due
to the presence of noise in the objective function evaluation, or the relationship between the parameters
and the function is significantly complex. The lack of gradient information prompts interest in optimiza-
tion algorithms that rely solely on measurements of the objective function. Historically, scientists and
engineers have used a standard “two-sided” finite-difference approximation such as the Kiefer-Wolfowitz
stochastic approximation algorithm (Kiefer and Wolfowitz, 1952). These approach require 2p function
evaluations to obtain an estimate of the gradient, where p is the number of parameters being optimized.

The SPSA technique represents a significant improvement over traditional finite-difference stochas-
tic approximation (FDSA) methods. The basis of the method is an efficient and intuitive “simultaneous
perturbation” estimate of the gradient. Only two measurements of the objective function are required at
each iteration, regardless of the number of parameters p. SPSA realizes the same level of accuracy as
comparable FDSA methods for a given number of iterations despite the fact that only two measurements
are made to form an estimate, as opposed to 2p measurements. Therefore, SPSA requires p times fewer
evaluations of the objective function to achieve an equivalent result (Spall, 2003).



The underlying premise of SPSA is the minimization of an objective function, J. The objective func-
tion J takes a real-valued vector of search parameters ~x of dimension p and returns a scalar. The process
begins with an initial guess of the input vector~x and iterates using the simultaneous perturbation estimate
of the gradient g(~x) = δJ/δ~x. Note that this formulation is similar to the FDSA algorithm discussed pre-
viously, but differs in the nature of the gradient estimate. The SPSA algorithm consists of the following
steps:

1. Initialize the Input Vector and Gain Sequences: An initial guess of the optimal input vector is made
(~x0). At this stage, one must also select the coefficients of the gain sequences ak and ck. These
sequences govern the step size at each iteration and the magnitude of the perturbation, respectively.

2. Generate the Perturbation Vector: A random perturbation vector (∆k) is generated. Each element of
the vector is independently generated using a Bernoulli ± 1 distribution with a probability of 1

2 for
each possible outcome.

3. Evaluate the Objective Function: Two measurements of the objective function are obtained: J(~xk +
ck∆k) and J(~xk− ck∆k).

4. Approximate the Gradient: The simultaneous perturbation approximation of the gradient, Ĵ(~xk),
is determined using (4). Note that the common numerator in all components of Ĵ(~xk) reflects the
simultaneous perturbation of all the components in~xk.

ĝ(~xk) =
J(~xk + ck∆k)− J(~xk− ck∆k)

2ck∆k
(4)

5. Update the Estimate: The standard stochastic approximation form (5) is used to update~xk to~xk+1.

~xk+1 =~xk−akĝ(~xk) (5)

Both practical and asymptotically optimal values of the coefficients ak and ck are available in the liter-
ature (Spall, 2003).



4 Case Studies

It is desirable to financially optimize the MPC-based decision policy discussed earlier. Two cases studies
are shown where the SPSA algorithm is used to determine optimal inventory targets (ri) and/or move
suppression weights (Q∆u

i ) according to the objective function shown in (6).

max
~r,~Q∆u

Profit = Revenue−Productioncost − (6)

Inventorycost −Backordercost

where

Revenue =
Tf inal

∑
k=1

γRC4(k) (7)

Productioncost =
Tf inal

∑
k=1

Nnodes

∑
j=1

γC jC j(k) (8)

Inventorycost =
Tf inal

∑
k=1

Nnodes

∑
j=1

γII10 j(k) (9)

Backordercost =
Tf inal

∑
k=1

γBBackorders(k) (10)

This comprehensive objective function accounts for the production cost, inventory holding cost, back-
order penalty, and revenue generation via the parameters γC, γI , γB, and γR, respectively. For the case
studies presented here, the objective function weights are as follows: γR = 40,γC1 = 10,γC2 = 8,γC3 =
2,γI = 0.1,and γB = 5.

4.1 Case Study 1: Tuning a Single Echelon Supply Chain

Figure 3 shows the optimization path for the SPSA algorithm applied to a single production/inventory node
(Nnodes = 1) subjected to uncertain, autoregressive demand. The factory is characterized by a throughput
time of 3 days and a 100% yield rate. The MPC prediction horizon p is 10 days and the move calculation
horizon m is 5 days. Since the accuracy of a demand forecast decreases as projections are made further
into the future, it is desirable to search for the optimal move suppression weights for each day in the move
horizon (as opposed to using a single move suppression value over the entire move horizon).

SPSA is used to maximize profit by adjusting each move suppression value in the horizon. Lower
move suppression values denote more aggressive factory starts changes and the optimizer shows that it is
financially optimal to act most aggressively to information that is available at the current sampling instant
and gradually be more detuned as the horizon extends into the future. The results corroborate with intu-
ition as it is advantageous to act cautiously to far out forecasted information and gradually become more
aggressive (with respect to factory starts) as more accurate demand information becomes available.
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Figure 3: SPSA optimization algorithm path for a 5-dimensional search space involving the selection of
independent move suppression values over a horizon. Top: Profit, Bottom: Move Suppression Values.
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Figure 4: Time series for a production/inventory node subject to uncertain demand. Move suppression
values weights ~Q∆u ∼ [33 44 52 58 63] are obtained from the SPSA optimization shown in Fig. 3.



Fig. 4 shows the MPC simulation result when the optimal parameters obtained from SPSA are imple-
mented. The most evident effect of move suppression is the “smoothing” effect it has on factory starts.
Abrupt changes in starts are penalized in the MPC objective function, which leads to a factory starts re-
sponse that is significantly less noisy than the actual demand. This is appealing from a factory manager’s
perspective, as substantial changes in the plant output may lead to disruptions from production plans and
may be financially detrimental.

4.2 Case Study 2: Optimizing Inventory Targets and Controller Tuning in a Three
Echelon Supply Chain
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Figure 5: SPSA optimization algorithm path for a 6-dimensional search space involving the selection of
inventory targets and move suppression values for a semiconductor supply/demand network characterized
by long throughput times, stochastic yield, and autocorrelated demand. Top: Profit, Middle: Inventory
Targets, Bottom: Move Suppression Values.

Figure 5 shows the optimization path for the SPSA algorithm applied to the larger network topology
(Nnodes = 3) shown in Figure 1. For this case study, both demand and supply (factory output) are uncertain.
The throughput times in M10 vary according to a triangular distribution, with 80% of the output produced



after 35 days and the remaining 20% evenly split between days 34 and 36. Throughput times vary similarly
in a similar for M20 and M30, with ranges between 5 to 7 and 1 to 3 days, respectively. Yield rates vary
uniformly for each manufacturing node (95%± 2% for M10, 98%± 2% for M20, and 99%± 1% for M30).

The optimization path is characterized by two distinct stages. Initially, the optimizer drives the in-
ventory targets towards zero. As baseline inventory levels are decreased, the risk of backorders increases.
Eventually, the optimization algorithm converges to an optimum where the inventory targets are approx-
imately 400, 0, and 1000 units for I10, I20, and I30, respectively. Given supply and demand uncertainty,
it makes physical sense to keep a buffer in the final inventory stage (I30, the inventory closest to the de-
mand), but seek to minimize the amount of excess intermediate products stored in earlier stages. Note
that the optimal target for I10 is greater than that of I20, this agrees with intuition as the factory M10 has
the longest throughput time and most stochastic behavior of all the production nodes. As demand vari-
ability and stochasticity increases, it will become necessary to keep larger inventories at all levels of the
supply/demand network. It is conjectured that global convergence with respect to inventory targets is ob-
tained, as these targets converge to the same values regardless of the initial guess~x0. Note that SPSA has
been shown to act as a global optimizer under certain conditions (Spall, 2003).

The second stage of the optimization process is characterized by the gradual “retuning” of the tactical
decision policy. For the cost values used in this study and the characteristics of the demand signal, prof-
itability of the supply chain seems somewhat less sensitive to changes in the move suppression values than
to changes in setpoint targets. Inventory and backorder costs are significantly greater than costs incurred
by detuning the MPC decision policy.

Fig. 6(a) shows the MPC simulation result when the initial guess (corresponding to the zeroth iteration
in Fig. 5) is used to parameterize the system. The high safety stock levels ensure that there are no backo-
rders. However, the targets can be reduced further to eliminate the cost of holding excess inventory, thus
increasing the profit. Fig. 6(b) shows the MPC simulation where controller tuning and inventory targets
are determined from the SPSA optimization algorithm (the final iteration shown in Fig. 5). Safety stock
levels are reduced to a level where inventory targets are as low as possible without incurring backorders.
This minimizes the inventory holding costs and increases profit.
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Figure 6: Time series for the three echelon supply chain shown in Fig. 1. Top, initial guess: ~Q∆u ∼
[30 30 30] and~r∼ [1500 1500 1500]. Bottom, optimization results: ~Q∆u ∼ [79 37 81] and~r∼ [400 0 1000].



5 Summary and Conclusions

Model Predictive Control (MPC) has been demonstrated to be capable of managing inventory in uncertain
multi-echelon supply/demand networks under constraints. The use of a simulation based optimization
strategy allows for the determination of controller tunings and operating targets that lead to optimal re-
sults from either an operational or financial standpoint. The results of the optimization on a single node
example show that it is advantageous to act cautiously to forecasted information and gradually become
more aggressive (with respect to factory starts) as more accurate demand information becomes available.
For the three echelon problem, the use of the simulation-based optimization method led to insights con-
cerning the proper parameterization and tuning of the tactical MPC decision policy. The amount of safety
stock necessary for optimal profitability is a function of the accuracy and magnitude of the demand fore-
cast. SPSA provides a way of systematically determining the financially optimal inventory targets and
the move suppression values present in the MPC objective function simultaneously. For the semiconduc-
tor manufacturing problem posed here, it was found that the optimization problem was more sensitive to
changes in inventory targets, and less sensitive to changes in move suppression. This allows for flexibil-
ity when tuning the decision policy, as robustness considerations do not have to be cast aside in favor of
increased profitability.
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