475c Improving Free Energy Calculations: Staging Sampling and Fail-Safe Bias Detection

Di Wu and David A. Kofke

The calculation of free energies is an important capability required of molecular simulation, because knowledge of the free energy is necessary to understand a wide range of thermophysical behaviors. However free-energy calculations may be subject to inaccuracy or inefficiency depending on different phase-space overlap relations of the systems of interest. Here we present staging methods that are designed with consideration of these overlap relations, such that single- or multi-stage perturbations are appropriately formulated to achieve the desired accuracy while retaining efficiency. The design of staging methods requires knowledge of phase-space overlap, and we present several metrics to characterize this. One of these measures, the relative entropy, is used to scale the amount of sampling to obtain a universal bias curve. This result leads to the development of a simple heuristic which can be applied to determine whether a work-based free-energy measurement is accurate.

Finally we demonstrate that this bias-detection measure is effective in identifying inaccuracy in singleas well as multi-stage calculations. Thus the effectiveness of staging sampling methods can be easily tested with this bias-detection measure. Examples used include the free-energy calculation of a multiharmonic model, the chemical potential calculation for a Lennard-Jones liquid, model water, and a process of ionic hydration.