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1. Introduction 

Chemical processes usually contain a large number of parameters, all of which are 
only known to a certain degree. However, it is not always necessary to identify the values 
of all of the parameters from data for building a model to be used for monitoring and control. 
Instead, a reduction of the parameter set can be performed such that only a limited number 
of them need to be estimated.  

This paper addresses this point and presents new techniques for reducing the 
parameter set of fundamental models. These novel methodologies reduce the set of 
parameters to be considered for a model via a technique derived from balanced model 
reduction [1] and further reduces this set of parameters via sensitivity analysis [2]. In the 
first step, the contribution that a parameter has to the input-output behavior of a system is 
identified based on the Hankel singular values. In a second step, the interactions between 
parameters are investigated via singular value decomposition of a sensitivity covariance 
matrix. The result can be a significantly smaller parameter set to be retained in the model.  

As the first step can be very conservative, while the second step looses the 
physical interpretation of the parameters, this combination allows that many parameters 
can still retain their physical interpretation, while at the same time a reduction of the 
parameters comparable to that of the second method can be achieved. However, each step 
can be an independent method for parameter reduction, therefore, this paper presents the 
comparison of these two independent methods and the combination methods in the case 
study.  
2. Parameter reduction for nonlinear systems 

This section presents three new approaches for reducing the parameter set of 
models derived from first principles. The advantages and drawbacks of each technique are 
discussed in detail. 
2.1. Parameter reduction based on Hankel singular values 

The state space realization of a nonlinear system with parameters can be 
expressed as  
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where nx ℜ∈  refers to a vector of the states of the system, lu ℜ∈  is a vector of 
inputs, my ℜ∈  represents a vector containing the measured variables, and sℜ∈θ  refers to 
the parameters of the system. Without loss of generality suppose that all variables have 
been normalized. 

The effect of parameters to the system can be identified by determining the 
contributions of parameters as if they are regarded as inputs. The contribution of the 
original inputs u can be determined by the controllability covariance matrix [3] 1,CW . 
Similarly, the controllability covariance matrix iCW , , i = 2, …, s+1, can be computed for each 



 

parameter. 1,CW  corresponds to the controllability covariance matrix representing the input-
to-state behavior for excitation with the inputs u. 2,CW  to 1, +sCW  on the other hand contain 
information about the input-to-state behavior if the system is only excited by variations in 
one of the parameters at a time. Since the observability gramian WO, does not depend 
upon the input or the parameters, the observability covariance matrix of the original system 
is the same as that of each subsystem. Therefore, the observability covariance matrix only 
needs to be computed once for this investigation.  

The Hankel singular values corresponding to the inputs or each parameter can be 
computed based on iCW ,  ,i = 1, …, s+1, and WO. These Hankel singular values can be used 
to determine the contribution of individual states to the input-output behavior. Let σi,u refer 
to the i-th Hankel singular value corresponding to the inputs, and where 

ji θσ , refers to the i-
th Hankel singular value corresponding to each parameter. Based on the error bound for 
balanced truncation of linear system [4], a parameter θj can be safely assumed to be 
constant if 
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The reason behind this argument is that the maximal error that is incurred by 
setting a parameter to its constant value is significantly smaller than the smallest error that 
can result from neglecting the effect that changes in the inputs have on the system. It 
should be noted that this is a very conservative condition. In most cases, the parameters 
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The strong points of this type of procedure for reducing the set of parameters are 
that  

• The physical meaning of the parameters is retained during the procedure 

• Explicit error bounds can be given for the effect that neglecting changes in the 
parameters have on the input-output behavior of a linear system 

• the computed error bounds are not just valid for the steady-state behavior, but will 
also hold if the parameters vary with time within their uncertainty range. 

A drawback of this method is that it can be very conservative, especially if the 
condition given by Eq. (2) is used for determining which parameters to neglect.  
2.2. Parameter reduction based on sensitivity analysis 

Define the sensitivity functions for the parameters: snxx ×ℜ∈
∂
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θθ . By differentiating Eq. (1), the parameter variation system can be obtained 
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where xfJ , , ufJ , , xgJ , , ugJ ,  are Jacobian matrices of the vector functions  f, g and 
with respect to the state and input vectors, pfJ , pgJ ,  are  Jacobian matrices of the vector 
functions f, g with respect to the parameter vector θ .  

Since all Jacobian matrices are functions of x, u and θ , it is necessary for Eq. (1) 
and (3) to be solved simultaneously. The set of equations need to be integrated over the 
time interval [0 T], with initial conditions 0)0( xx =  and 0)0( =θx  and the input held at zero.  

The sensitivity covariance matrix can then be computed from 
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where ssy ,θ  is the final steady state value of θy .  

(5) 

The information contained in the SCM allows to extract the principle directions in 
the parameter space that will give the largest contribution to the parameter-output behavior. 
Extracting the most important directions in the parameter space, allows to take the 
interactions in the parameters into account and can result in a significantly reduced 
parameter set. This section describes how the information contained in the SCM can be 
extracted and interpreted.  

Since the sensitivity covariance matrix defined in Eq. (5) is a positive semi-definite 
matrix, all eigenvalues are non-negative real numbers. Furthermore, due to its symmetry, 
this matrix can be diagonalized by an orthogonal matrix even if multiple eigenvalues exist 
[5]. Therefore, singular value decomposition can be applied to this sensitivity covariance 
matrix 
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where ssT ×ℜ∈ , an orthogonal matrix; superscript T indicates the transpose; and 
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Then, the linear transformation relationship θθ T=  is introduced, such that the 
system in the new parameter space can be given by 
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Since the diagonal entries of SCM  provide a measure of the importance of the 
corresponding parameters in the new parameter space, the parameters can be classified 
as belonging to an important and a less important category. The transformed parameter 
vector θ  can be partitioned into two parts, 1θ  and 2θ , as shown in Eq. (8). 1θ  represents 



 

the more important parameters, which should be retained during parameter reduction and 
2θ are of lesser importance and will be reduced. 
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The last step is to truncate the less important states 2θ  via a projection matrix P 
leading to the reduced system  
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where ]0[ )( kskkkIP −××= , k is the number of parameters retained.  

(9) 

The strong points of this second technique are that 

• it is possible to take interactions between the parameters into account during the 
reduction procedure 

• the reduced set of parameter can be significantly smaller than the original set. 
The main drawback is that the physical meaning of the parameters is lost during 

this procedure. 
2.3. Combination of above two methods 

As Methods I and II both have their advantages and drawbacks, it is possible to 
combine them to avoid some of the disadvantages. A third technique is proposed here 
which performs the following steps:  

(1) the sensitivity of the outputs with respect to changes in the parameters is 
investigated via the Hankel singular value-based technique. This investigation will 
keep all the parameters at their nominal value if changes in them will not result in 
significantly different behavior of the outputs.  

(2) Compute the SCM for the reduced set of parameters from (1) and perform 
parameter space reduction. 
The advantages that this combination of the techniques offers are that, the physical 

meaning of all reduced parameters in step (1) are retained, while it is possible to 
substantially reduce the number of parameters due to the reduction from step (2). 
3. Performance evaluation 

Evaluating the performance of systems where the parameter set has been reduced 
is an important step of the parameter reduction procedure. A technique based on Monte 
Carlo simulation method is applied to evaluate the performance in time domain. 

This method is based upon varying the inputs and the parameters of the system, 
computing the trajectories of the outputs in the time domain, and comparing the results of 
the systems with reduced parameter sets to the behavior of the original process. A variety 
of different inputs and changes in the parameters has to be considered for this technique. 
This is achieved by randomly varying the inputs and the parameters within their bounds 

 



 

and computing a large number of trajectories (usually greater than 1000). The average 
error introduced by reduction of the parameter set can then be computed from this run. 

It is important, however, to also determine confidence intervals for the average 
error introduced by the reduction procedure. This is done by repeating the Monte Carlo 
simulations several times and determining a mean of the average error as well as a 
standard deviation of the average error: 
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system. y represents the output of the original system and yr refers to that of the reduced 
system. N is the sample length for one simulation. 

Choosing the number of simulations used for each Monte Carlo simulation as well 
as the number of repeated Monte Carlo simulations is a key component for this evaluation 
method. In general, it can be said that if both numbers are sufficiently large then the 
standard deviation will be small.  
4. Case study 

A system of continuously stirred tank reactors in series is applied to illustrate the 
applicability of these techniques, which was studied in [6]. This system has one input, the 
coolant flow rate and one output, the effluent concentration from the second tank. This 
model contains four states, which are the temperatures and concentrations of the products 
in each tank. And, the system contains 14 parameters,  
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some of which are physical constants, which depend upon the properties of the streams 
while some others are equipment related or even related to the operating conditions.  

A comparison of Hankel singular values based upon covariance matrices 
computed for the system excited by the input and the parameters shown in Fig. 1-a. In this 
figure, the sequence of parameters is consistent with that of the vector θ. Based on this 
figure, it can be concluded that the relative importance of the parameters is 
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It also can be seen that there are three parameters, 1hA , 2V  and 2hA , whose 
Hankel singular values are very small and can be neglected.  

The sensitivity covariance matrix is obtained based on the system trajectories. The 
eigenvalues of the sensitivity covariance matrix in descending order are shown in Fig. 1-b.  

For the combination method, the initial screening step, based on the Hankel 
singular values, determined that only 1hA , 2V  and 2hA  are to be reduced. Parameter space 
reduction is then performed on the 11 remaining parameters.  



 

Model performance evaluation for this nonlinear example is conducted in the time 
domain by use of Monte Carlo simulations. Each Monte Carlo experiment included 
simulating the system with variations in the inputs and the parameters 5,000 times. The 
variations of the inputs and parameters are generated randomly in their ranges based on a 
uniform distribution. The errors between the original system and reduced systems can be 
computed as defined in Eq. (10). Based upon the results for 5000 simulations, the 
percentage of the errors below threshold values of 0.0005, 0.001, 0.005, 0.01 and 0.05 is 
recorded. While this Monte Carlo run determined value, it is important to repeat this 
experiment several times to statistically evaluate the results. For this work, the experiment 
has been repeated 10 times and standard deviations of the mean value of the error bound 
have been obtained. For example, for each experiment, the percentages of the error below 
0.01 for the system reduced by the combination method were determined to be 0.9936, 
0.9938, 0.9936, 0.9928, 0.9936, 0.9926, 0.9932, 0.9950, 0.9938 and 0.9932, respectively. 
Then the estimation of this percentage is 0.9935±0.00066. For each threshold value and 
each method, such an estimation is generated. Fig. 2 shows the comparison of the 
statistics results for three methods in four cases: where 4, 5, 6 and 7 parameters are 
retained.  

From these figures, it can be concluded that all three methods achieve a 
satisfactory performance for the reduced system. Additionally, it can be seen that if the 
same number of parameters needs to be retained, that the sensitivity analysis method and 
the combination method have a better performance than Method I (Hankel singular value-
based technique). This point is also illustrated by Fig. 3, in which the relative errors for 
three methods are plotted for one Monte Carlo experiment. It can also be concluded for this 
example that Method II (sensitivity analysis method) and Method III (combination method) 
have comparable performance. When the number of retained parameters is more than 5, 
then the percentages of the models that Method III produces do not exceed the threshold 
are slightly larger than those for Method II. On the other hand, when the number of retained 
parameters is less or equal to 5, the Method II shows a slightly better performance. Another 
comparison is shown in Table 1. The percentages in this table represent the number of 
cases where the relative error resulting from Method III is smaller than the one for Method 
II. It can be seen Method III slightly outperforms Method II for this study, even though some 
information is lost in the initial screening step for this technique  
5. Conclusions 

Techniques for reducing the parameter set of fundamental models are presented in 
this paper. The first method focuses on determining the relative importance of parameters 
for the system behavior based on Hankel singular values computed for each parameter. 
The second technique is based on parameter space reduction, which allows reduction of a 
significant number of parameters while retaining most of the system behavior. Considering 
the advantages and drawbacks of these two methods, a combination of these two methods 
is also developed in this work. An initial screening step similar to analysis via Hankel 
singular values is applied followed by a reduction of the parameter space spanned by the 
remaining parameters.  

All three techniques are illustrated via a CSTR example. While each method can 
result in a good approximation, the number of parameters reduced via Method II and III is 
significantly larger than for the first technique if comparable performance is to be achieved. 
Both Method II and the combination method exhibited comparable performance in the 



 

example, where the combination technique has the advantage that the physical 
interpretation of some parameters is retained in the model. 
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Fig. 1. Hankel singular values for parameters (Method I) and eigenvalues of sensitivity 

covariance matrix (Method II), for example 2.  
(a) Comparison of Hankel singular values in Method I 

Legend:  Twice of the sum of Hankel singular values for parameters,  The 1st 
Hankel singular value for inputs,  A threshold line with the value equal to u,1σ , 

 A threshold line with the value equal to u,11.0 σ  

(b) Eigenvalues of sensitivity covariance matrix in Method II 



 

 
 
 
Fig. 2. Comparison of statistics results for three methods: (a) 4 parameters retained; (b) 5 

parameters retained; (c) 6 parameters retained; (d) 7 parameters retained. 
Legend:  Method I;  Method II;  Method III 

 
 



 

 
Fig. 3. The relative error set in one Monte Carlo simulation. 

 
Table 1 The percentage of cases in which Method III is better than Method II.  

 4 retained 5 retained 6 retained 

Percentage  52.69±0.61% 39.43±0.59% 57.74±0.57% 

 7 retained 8 retained 9 retained 

Percentage 60.09±0.87% 59.52±0.37% 70.91±0.62% 
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