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Abstract— We present a method for the synthesis of a
control law which incorporates both a traditional linear output-
feedback controller as well as a static anti-windup compensator.
Unlike traditional anti-windup controller design in which the
linear controller and anti-windup compensator are designed
sequentially, our method synthesizes all controller parameters
simultaneously, thus providing a priori account of the effects
of saturation on the closed-loop dynamics. Moreover, we derive
sufficient conditions for the quadratic stability and (possibly)
multiple performance bounds on the closed-loop dynamics such
that the entire synthesis is cast as an optimization problem over
linear matrix inequalities (LMIs).

I. INTRODUCTION

The behavior of linear, time-invariant (LTI) system subject
to actuator saturation has been extensively studied over the
past several decades. During this time, a neutral division has
occurred wherein two general methodologies have emerged
for handling input saturation; those methods that account for
saturation a priori and those which account for saturation a
posteriori. Among theses techniques, the term anti-windup
has been used extensively to describe a large class of input
constrained control methodologies.

Originally, anti-windup was used to describe a modified
P/PI/PID control law, consisting of the original P/PI/PID
control law with an additional anti-windup compensator
which modified the the control law only in the event of ac-
tuator saturation.[4]. Subsequently, anti-windup control was
extended to describe any LTI control law which consisted
of an LTI controller and anti-windup compensation[1], [12],
[9], [6], [10], [8], [3].However, a majority of these methods
remained a posteriori technique, following a two step design
methodology: Design first the linear controller ignoring
effects of any control input nonlinearity and then add anti-
windup compensation to minimize the adverse effects of any
control input nonlinearities on closed loop performance.
The main advantage of this design methodology is that
no restrictions are placed on the original linear controller
design. One can use the wealth of existing linear control
theory and design methods to build the linear controller,
then subsequently design the anti-windup compensator to
minimize any adverse behavior that the linear controller
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would exhibit during saturation. Moreover, existing linear
controller implementation can be retrofitted for saturation
using such an anti-windup compensation approach. The main
disadvantage is that although the linear controller and anti-
windup compensation both affect the closed-loop perfor-
mance the effect of the linear controller on the performance
under the saturation is completely ignored, by definition.

In this paper, we propose a control law with the structure
of the traditional anti-windup design: a linear controller
and static anti-windup compensation. Unlike the traditional
two-step design procedure for anti-windup, we propose a
method for the simultaneous synthesis of both the linear
controller and static anti-windup compensator. There are
several instances where anti-windup retrofits to existing
linear controllers involving not only the addition of anti-
windup compensation but also retuning/detuning of the orig-
inal linear controller parameters. Such retuning/detuning of
the original linear controller during anti-windup retrofitting
is currently carried out using ad-hoc guidelines involving
an intuitive understanding of the interactions and trade-
offs between linear and constrained closed-loop responses.
The proposed method provides a systematic framework for
carrying out these trade-offs in a multi-objective settings.

Our method is based on extending the work in [11] to
include anti-windup synthesis; an idea originally proposed in
[7]. However, this was not possible until an LMI solution was
provided for the traditional two-step anti-windup synthesis in
[9]. The result of combining the work in [11] with [7] is a
multi-objective synthesis with guarantee for stability, uncon-
strained performance and constrained performance where the
overall synthesis is cast as an optimization over LMIs. Thus
we provide an efficient and practical method for controller
synthesis which provides the ability to design unconstrained
and constrained closed-loop response, and their interaction,
a priori.

II. PROBLEM STATEMENT AND FORMULATION

Consider the multi-input, multi-output (MIMO), LTI plant
described by the following state space equations:

P







ẋp = Apxp + Bww + Bpsat(u)
z = Czxp + Dzww + Dzsat(u)
y = Cyxp + Dyww

(1)

where u is the vector of constrained control input(s), w is the
vector of exogenous inputs (reference signals, disturbances,
noise etc.), y is the vector of plant measurements available
to the controller and z is the vector of plant outputs which



govern the performances of the control system and sat(·) is
the standard decentralized saturation function defined as:

sat(u) =







sat(u1)
...

sat(un)







sat(ui) =







umax
i if ui > umax

i
ui if umin

i ≤ ui ≤ umax
i

umin
i if ui < umin

i

Our goal is the synthesis of a full order, dynamic output-
feedback controller with static anti-windup, as shown in
Figure (1):

K
{

ẋk = Akxk + Bky + Λ1[sat(u)−u]
u = Ckxk + Dky + Λ2[sat(u)−u]

(2)

Fig. 1. Standard interconnection for the a nti-windup problem

If we define ν = u− sat(u), ξ = −Λν =

[

Λ1
Λ2

]

ν and

xcl =

[

xp
xk

]

then we can rewrite P and K as a closed-loop

system with the following realization:

T







ẋcl = A xcl + Bww + (Bν −Bξ Λ)ν
u = Cuxcl + Duww − Duξ Λν
z = Czxcl + Dzww+(Dzν −Dzξ Λ)ν

(3)

where,

A =

[

Ap +BpDkCy BpCk
BkCy Ak

]

Bw =

[

Bw +BpDkDyw
BkDyw

]

Bν =

[

−Bp
0

]

Bξ =

[

0 Bp
I 0

]

Cu =
[

DkCy Ck
]

Duw =
[

DkDyw
]

Duξ =
[

0 I
]

Cz =
[

Cz +DzDkCy DzCk
]

Dzw =
[

Dzw +DzDkDyw
]

Dzν =
[

−Dz
]

Dzξ =
[

0 Dz
]

Λ =

[

Λ1
Λ2

]

Also we refer to a particular input-output channel as Ti j =
LiT R j where,

Ti j







ẋcl = A xcl + Bw j w j + (Bν −Bξ Λ)ν
u = Cuxcl + Duw j w j − Duξ Λν
zi = Czixcl + Dziw j w j +(Dziν −Dziξ Λ)ν

(4)

with,

Bw j =

[

BwR j +BpDkDywR j
BkDywR j

]

Duw j =
[

DkDywR j
]

Czi =
[

LiCz +LiDzDkCy LiDzCk
]

Dziw j =
[

LiDzwR j +LiDzDkDywR j
]

Dziν =
[

−LiDz
]

Dziξ =
[

0 LiDz
]

Li and R jare block diagonal matrices which isolate the
desired input and output channels required for each perfor-
mance objective. Thus our goal is to formulate LMIs which
guarantee that the closed-loop system T is aymptotically
stable as well as formulate additional LMIs which provide a
variety of performance guarantees for individual input-output
channels, Ti j.

III. SYNTHESIS OF STABILIZING K(S)

A. Synthesis of Globally Stabilizing K for Unconstrained
Systems

For the case when the closed loop system (3) is uncon-
strained (ν = 0), we can use the result from [11] to synthesize
Ak, Bk, Ck and Dk such that T(ν = 0) is asymptotically stable.
We state the following useful result from [11].

Theorem 1 (Stabilizing Unconstrained, Output-feedback
Control[11]). Given the linear plant in (1), there exists
a controller, K, of the form in (2) which asymptotically
stabilizes P with ν = 0 if and only if there exists the matrices
Â, B̂, Ĉ, D̂,P11 and Q11 such that the following inequalities
are satisfied:









ApQ11 +Q11AT
p+ ∗

BpĈ+ ĈT BT
P

Â+CT
y D̂T BT

p BT
p +AT

p P11Ap +AT
p P11+

B̂Cy +CT
y B̂T









< 0 (5)

[

Q11 ∗
I P11

]

> 0

Given such a solution, the parameters Ak, Bk, Ck and Dk can
be calculated from the following sequential set of algebraic
equations

Q12PT
12 = I−Q11P11 (6a)

D̂ = Dk (6b)

Ĉ = CkQT
12 +DkCyQ11 (6c)



B̂ = P12Bk +P11BpDk (6d)

Â = P12AkQT
12 +P12BkCyQ11+

P11BpCkQT
12 +P11(Ap +BpDkCy)Q11

(6e)

Proof: Let us require T (ν = 0) admits a quadratic Lya-
punov function of the form:

V = xT
xlPxcl (7)

Requiring that V (x) > 0 and V̇ (x) < 0 for all t > 0 guarantees
that T (ν = 0) is asymptotically stable. Next, it is shown in
[2] that such conditions are satisfied if and only if there exists
a solution to the following set of matrix inequalities:

A
T P+PA < 0 P > 0 (8)

Now, partition P such that:

P =

[

P11 P12
PT

12 P22

]

(9)

and partition its inverse, Q = P−1 as:

Q =

[

Q11 Q12
QT

12 Q22

]

(10)

Note that since PQ = I, then:

A
[

Q11
QT

12

]

=

[

I
0

]

(11)

Define:

Π1 =

[

Q11 I
QT

12 0

]

Π2 =

[

I P11
0 PT

12

]

(12)

and thus PΠ1 = Π2. Finally, apply the congruence transfor-
mation, (ΠT

1 ), to both matrix inequalities in (??) to get the
final result in (5), utilizing the change of variables in (6).
Note that we have used boldface letters to emphasize the
decision variables in (5). Given a solution to (5), it was
shown in [11] that one can always calculate Q12 and P12
from Q12PT

12 = I−Q11P11 for full order controller synthesis
and also Q12 and P12 are invertible. Thus, one can always
reconstruct P, Q as well as Ak, Bk, Ck, Dk. Finally recall that
it is well established in linear control theory that a solution
is guaranteed to exist for (5) if and only if (AP,Bp) is
stablilizable and (Cy, Ap) is detectable.

B. Synthesis of Globally Stabilizing K for Constrained Sys-
tems

For the case of global asymptotic stability of the closed-
loop system (when ν 6= 0), we choose to construct a Lya-
punov function of the same form V = xT

clPxcl but now
we will require that V (x) > 0 and V̇ (x)+ [uTWν +νTWu−
2νTWν ] < 0 for all t > 0 where W is a positive definite
diagonal matrix. It was shown in [9] that solving such
a Lyapunov problem would guarantee global asymptotic
stability of the closed loop system in (3). Moreover, it was
shown that a solution exists for such a Lyapunov problem
if and only if there exists a solution to the following set of
matrix inequalities:

[

A T P+PA ∗
BT

ν P−ΛT BT
ξ P+WCu −2W −WDuξ λ −λ T DT

uξW

]

< 0

(13)
P > 0, W > 0

In [9], the authors go on to provide a LMI solution to synthe-
size Λ for fixed Ak, Bk, Ck and Dk. Moreover, it was shown
that this condition can also be derived by application of the
multi-loop circle criterion. Here, we wish to provide a linear
solution where we simultaneously synthesize Ak, Bk, CK and
Dk and Λ. We state the following theorem here,

Theorem 2 (Stabilizing Constrained, Output-feedback
Control). Given the linear plant P in (1), there ex-
ists a controller, K, of the form in 2 which asymptoti-
cally stabilizes P with ν 6= 0 if there exist the matrices
Â, B̂, Ĉ, D̂, Λ̂1, Λ̂2, ˆP11andQ̂11 such that the following
inequalities are satisfied:















ApQ11 +Q11AT
p+ ∗

BpĈ+ ĈT BT
P

Â+CT
y D̂T BT

p +AT
p P11Ap +AT

p P11+

B̂Cy +CT
y B̂T

−Λ̂T
2 BT

p + Ĉ −Λ̂T
1 + D̂Cy

∗

∗

−Λ̂2 − Λ̂T
2













< 0 (14)

[

Q11 ∗
I P11

]

> 0

Given such a solution, the parameters Ak, Bk, Ck and Dk are
calculated from (6) while Λ1 and Λ2 satisfy

Λ̂1 = P12Λ1M +P11Bp(I +Λ2)M (15a)

Λ̂2 = (I +Λ2)M (15b)

Proof: Simply apply the congruence transformation
diag(ΠT

1 ,M), where M = W−1 to (13) to get (14).

As in [11], given a solution to (14), one can always
reconstruct P, Q and thus Ak, Bk, Ck, Dk, Λ1 and Λ2. Next,
we would like to determine the conditions on the plant P,
such that a solution exists to (14).

Theorem 3 (Stabilizing Constrained, Output-feedback
Control). Given the linear plant P in (1), a necessary and
sufficient condition for the existance of a solution to Theorem
(2) is that all the eigenvalues of AP have negative real part.

Proof: Apply the congruence transformation, diag(Q,M)
to (13) to get

[

QA T +A Q ∗
MBT

ν +CuQ −2M

]

+

[

−Bξ
Duξ

]

X
[

0 I
]



+

[

0
I

]

XT
[

−BT
ξ −DT

uξ

]

< 0 (16)

Q > 0, M > 0

wehre we have introduced the new variable, X = ΛM. Now,
according to [2], we can eliminate the variable X by replacing
(16) with the equivalent inequalities:

ψT
[

QA T +A Q ∗
MBT

ν +CuQ −2M

]

ψ < 0

ζ T
[

QA T +A Q ∗
MBT

ν +CuQ −2M

]

ζ < 0 (17)

Q > 0, M > 0

where ψ =

[

ψ1
ψ2

]

,
[

0 I
]

ψ = 0 and
[

−BT
xi −DT

uξ

]

ζ = 0. After some algebra, one can
reduce (17) to:

QA
T +A Q < 0

Q11AT
p +ApQ11 < 0 (18)

Utilizing Theorem 1(5) and applying Schur complement to
the sedond inequality, we can further reduce (18) to:

[

ApQ11 +Q11AT
p +BpĈ+ ĈT BT

p
Â+CT

y D̂T BT
p +AT

p

∗

P11Ap +AT
PP11 + B̂Cy +CT

y B̂T

]

< 0 (19)

Q11−P11
−1 > 0, ; mathb f P11 > 0

Q11AT
p +ApQ11 < 0

Now, if all eigenvalues of Ap have negative real part, it is
well known (see [2] for example) that for any Z > 0, ApQ11+
Q11AT

p =−Z has unique solution with Q11 > 0. Now, define
Q̃11 such that ApQ̃11+Q̃11AT

P =−I and P̃11 such that P̃11Ap+
AT

p P̃11 = −I. Then for any scalar α > 0 and scalar β > 0,
choose Q11 = αQ̃11 such that ApQ11 + Q11AT

p = −αI and
P11 = β P̃11 such that P11Ap +AT

p P11 =−β I. Without loss of
generality we can rewrite (19) as:

[

−αI +BpĈ+ ĈT BT
p ∗

Â+CT
y D̂BT

p +AT
p −β I + B̂Cy +CT

y B̂T

]

< 0 (20)

αQ̃11 −
1
β

P̃−1
11 > 0

ApQ̃11 + Q̃11AT
p = −I

P̃11Ap +AT
p P̃11 = −I (21)

Thus (20) can always be solved for appropriately large α
and β .

Remark 1: As shown in [5], the conditions in (18) are not
always feasible for the two-step static anti-windup synthesis.
However, (18) is always feasible for the one-step static anti-
windup synthesis.

Remark 2: It is shown from (6) that (20) admits the
trivial solution u = 0, i.e. Ak = 0, Bk = 0, Ck = 0, Dk = 0
for strictly stable plants, i.e. Ap with all eigen values with
negative real parts. However, it is true that infinite other
nontrivial solutions exist provided the plant is strictly stable.
Experience also demonstrates the existance of nontrivial
solution.

IV. PERFORMANCE OBJECTIVE AND MULTI-OBJECTIVE
SYNTHESIS

In designing an anti-windup control system, the designer
must choose which control channel to optimize and more-
over, in what sense to optimize the chosen channel. Some
authors have proposed directly minimizing the gain from
reference and disturbance signal to the output error or state
error while other authors have suggested minimizing the
gain from the controller output error to the output or state
error. In our framework, all forms can be handled directly
by appropriately defining w and z. Moreover, when deciding
in what sense to minimize a particular input-output channel,
several choices have been suggested, although the induced
L2 gain is a popular choice. In [11], the authors present
an extensive catalog of performance objectives for a linear
control design (no saturation). Here, we wish to present in
detail two possible performance objectives, the induced L2
gain and the peak-to-peak gain, for the saturating closed-
loop that can be used in an over-all possibly multi-objective
synthesis.

A. Minimizing the induced L2 gain

We begin by defining the induced L2 gain from the
exogenous input w j to the desired output, zi as :

sup
‖w j‖2 6=0

‖zi‖2

‖w j‖2
(22)

Now, following [2], define the Lyapunov function (7)
requiring:

V > 0 (23)
V̇ + zT

i zi − γ2wT
j w j +[uTW ν +νTWu−2νTW ν ] < 0

Integration of the second inequality in (23) from t = 0 to
t = T with xcl(0) = 0 reveals that:

V (x(T ))+

∫ T

0
(zT

i zi − γ2wT
j w j)dτ ≤ 0 (24)

Since V (x(T )) > 0, this implies that:

‖zi‖2

‖w j‖2
≤ γ

Thus existence of a Lyapunov function which satisfies (23)
guarantees asymptotic stability and that the induced L2 gain
form the exogenous input w j to the desired output zi is
always less than γ . We now give sufficient conditions for
the existence of a controller K which guarantees an upper
bound on the induced L2 gain from the exogenous input w j
to the desired output zi.



Theorem 4 (Induced L2 gain synthesis for Constrained,
Output-feedback Control). Given the linear plant P in
(1), there exists a controller K of the form in (2) which
asymptotically stabilizes P with ν 6= 0 and has an induced
L2 gain from w j to zi less than γ if there exists a scaler
γ > 0 and matrices Â, B̂, Ĉ, D̂, Λ̂1, Λ̂2, P11 and Q11 such
that the following inequality holds:


















ApQ11 +Q11AT
p+ ∗

BpĈ+ ĈT BT
P

Â+CT
y D̂T BT

p +AT
p P11Ap +AT

p P11 + B̂Cy +CT
y B̂T

RT
j BT

w +RT
j DT

ywD̂T BT
p RT

j BT
wP11 +RT

j DT
ywB̂T

LiCzQ11+LiDzĈ LiCz +LiDzD̂Cy

−Λ̂T
2 BT

p + Ĉ −Λ̂T
1 + D̂Cy

∗ ∗ ∗
∗ ∗ ∗

−γ2I ∗ ∗

LiDzwR j +LiDzD̂DywR j −I ∗

D̂DywR j −Λ̂T
2 DT

z LT
i −Λ̂2 − Λ̂T

2













< 0

(25)

[

Q11 ∗
I P11

]

> 0

A well defined upper bound on the induced L2 gain is
obtained by finding the minimum feasible γ subject to (25)
which is a standard LMI eigenvalue optimization problem
[2].

Proof: It is easily shown that (23) is equivalent to the
following matrix inequaltiy problem:









A T P+PA ∗
BT

w j
P −γ2I

BT
ν P−ΛT BT

ξ +WC T
u WDuw j

Czi Dziw j

∗ ∗
∗ ∗

−2W −WDuξ Λ−ΛTDT
uξ W ∗

Dziν −Dziξ Λ −I









< 0 (26)

W > 0, P > 0

Now, apply a congruence transformation,

diag(I, I,
[

0 I
I 0

]

), followed by the congruence

transformation, diag(ΠT
1 , I, I,M) to get the result in

(25).

B. Minimizing the Peak-to-Peak Gain

We begin by defining the peak-to-peak gain from the
exogenous input w j to the desired output zi as:

sup
|w j(t)|≤w j max

|zi(T )|,T ≥ t ≥ 0, xcl(0) = 0 (27)

Now, following [2] and [11], define the usual Lyapunov
function and require that:

V > 0
λ > 0

V̇ +λV −µwT
j w j +[uTW ν +νTWu−2νTWν ] < 0 (28)

λV +(ρ −µ)wT
j w j −ρ−1zT

i zi − [uTWν +νTWu

−2νTWν ] > 0

where ρ > 0, ρ −µ > 0. Since [uTWν +νTWu−2νTWν ]≥
0 and |w j(t)| ≤ w jmax, the third inequality above (28)
guarantees that V̇ < 0 whenever λV − µwT

j w j > 0. Thus,
for V (xcl(0) = 0), V (Xcl(t) can never exceed the value
(µ/λ )wT

j w j.
Now, since ρ > 0 and (ρ − µ) > 0, the fourth inequality
above (28) guarantees that:

zT
i zi ≤ ρ(λV +(ρ −µ)w2

jmax − [uTWν +νTWu−2νTWν ]

Recalling that V (xcl(t)) can never exceed the value
(µ/λ )wT

j w j, we get:

zT
i zi ≤ ρ2w2

jmax

Thus, we can use the Lyapunov problem in (28) to derive
an upper bound on zi or on the gain form bounded w j to
the output zi. We now give the sufficient conditions for the
existence of a controller K which guarantees an upper bound
on the peak-to-peak gain from exogenous input w j to the
desired output zi for the system:

Theorem 5 (Peak-to-Peak Gain Synthesis for Con-
strained, Output-feedback Control). Given the linear plant
P in (1), there exists a controller K, of the form in (2) which
asymptotically stabilizes P with ν 6= 0 and has a peak-to-
peak gain from w j to zi less than ρ if there exists a scalar
ρ > 0 and matrices Â, B̂, Ĉ, D̂, Λ̂1, Λ̂2, P11, Q11 λ and µ
such that the following inequalities are satisfied:



















ApQ11 +Q11AT
p+ ∗

BpĈ+ ĈT +λQ11
Â+CT

y D̂T BT
p BT

p +AT
p+ P11Ap +AT

p P11 + B̂Cy+

λ I CT
y B̂T λP11

RT
j BT

w +RT
j DT

ywD̂T BT
p RT

j BT
wP11 +RT

j DT
ywB̂T

−Λ̂T
2 BT

p + Ĉ −Λ̂T
1 + D̂Cy

∗ ∗
∗ ∗

−µI ∗

D̂DywR j −Λ̂2 − Λ̂T
2









< 0 (29)













λQ11 ∗
λ I λP11
0 0

LiCzQ11 +LiDzĈ LiCzQ11 +LiDzD̂Cy

Λ̂T
2 BT

p − Ĉ Λ̂1 − D̂Cy



∗ ∗ ∗
∗ ∗ ∗

(ρ −µ)I ∗ ∗

LiDwzR j +LiDzwD̂DywR j ρI ∗

−D̂DywR j Λ̂T
2 DT

z LT
i −Λ̂2 − Λ̂T

2













> 0

(30)
[

Q11 ∗
I P11

]

> 0 , λ > 0 (31)

A well defined bound on the peak-to-peak gain from w j to
zi is obtained by finding the minimum feasible ρ subject to
(29), (30) and (31) which is a standard LMI generalized
eigenvalue optimization problem [2].

Proof: It is easily shown that (28) is equivalent to the
following matrix inequality problem:





A T P+PA +λP ∗
BT

w j
P −µI

BT
ν P−ΛT BT

ξ P+WC T
u WDuw j

∗
∗

−2W −WDuξ Λ−ΛTDT
uξW



 < 0









λP ∗
0 (ρ −µ)I

−WCu −WDuw j

Czi Dziw j

∗ ∗
∗ ∗

2W +WDuξ Λ+ΛT DT
uξW ∗

Dziν −Dziξ Λ −ρI









< 0 (32)

W > 0, P > 0, ρ > 0

Now, apply a congruence transformation,

diag(I, I,
[

0 I
I 0

]

) to the second inequality followed

by the congruence transformation, diag(ΠT
1 , I,M) and

diag(ΠT
1 , I, I,M) to get the result in (29),(30),(31).

C. Multi-objective synthesis

The primary contribution of this work is the simultaneous
synthesis of all controller parameters in K for the ant-
windup control systems such that all degrees of freedom
from the controller parameters (linear controller parameters
and anti-windup compensator parameters) are available to
design and explore the trade-offs between an unconstrained
and constrained performance objective. However, it is also
possible to simultaneously synthesize all parameters in K
such that a set of N performance objectives specified by
the designer is met/optimized. For any individual perfor-
mance objective problem, an optimal solution results in a
particular set of controller parameters (Ak, Bk, Ck, Dk, Λ1 and
Λ2) and a Lyapunov variable, P. For the multi-objective
synthesis, as in [11], we require that a single set of variables

(Ak, Bk, Ck, Dk, Λ1, Λ2 and P) satisfy the combined set of
N matrix inequality problems in order to make the multi-
objective synthesis problem convex (an LMI). This is natural
in the case of the controller parameters. However, requiring
a single Lyapunov function to satisfy all objectives (whether
unconstrained or constraiend) indroduces conservatism. This
is the price we pay for convexity.

For multi-objective unconstained output-feedback con-
troller synthesis, the effect of the conservatism is well
understood and methods have been developed to reduce
the conservatism. In the case of multi-objective anti-windup
output feedback controller synthesis, we encounter a different
problem. In our method, we use a stabilty theorem which can
be shown to be equivalent to the multi-loop circle criteriion
for guaranteeing global asymptotic stabilty [9]. Requiring
a single Lyapunov function for both the constrained and
unconstrained objectives can lead to more conservative per-
formance bounds from the one-step synthesis presented here
when compared to the equivalent two-step synthesis. How-
ever, in many case the two-step synthesis can lead to more
conservatove results when compared to one-step synthesis,
or eve worse. At times the two-step synthesis also fails to
provide a solution in some cases while the one-step syntehsis
is guaranteed to find a stabilizing solution for all open-
loop stable plants However, both the two-step and one-step
synthesis are available and computable as LMIs. For those
few cases where the two-step synthesis outperforms one-step
synthesis presented here, the simultaneous synteheis can be
modified such that each performance objective has a unique
Lyapunov variable. Although this modification results in a
optimaization over bilinear matrix inequalties (BMIs), one
can use the solutions from the LMI version of the one-step
and two-step synthesis as initial points and easily compute
tighter performance bounds form a local BMI optimazation.

V. CONCLUSION

We have presented a framework for the synthesis of
a constrained linear control law which incorporates both
traditional linear output-feedback controller and static anti-
windup compensator. However, our work differs from the
traditional anti-windup synthesis where the output-feedback
controller is synthesized first, followed by the anti-windup
compensator. In our method, all controller parameters are
synthesized simultaneously. Thus, our simultaneous ap-
proach provides:
• A systematic framework for the synthesis of a control

law where the effect of all controller parameters can be
utilized to design the unconstrained and constrained closed-
loop performance.
• A framework for the synthesis of a control law

which provides, a priori, bounds on multiple uncon-
strained/constrained performance objectives and allows in-
sight into the trade-off between each objectives.
• A method for bounding constrained performance with a

choice of several objectives. Previously reported LMI anti-
windup synthesis techniques are limited to only L2 gain (or
closely related) performance objectives.
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