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Abstract 

Different approaches of grafting poly (ethylene glycol) (PEG) chains to 
commercially available cellulose acetate ultrafiltration membrane were 
considered and compared  with respect to permeate flux and fouling prevention. 
Grafting was attained by forming a reactive radical on the membrane surface by 
oxidation and attaching PEG chains. Grafting chain length and density were 
controlled by using a chain transfer agent.  
 
Introduction 

The selective layer is responsible for providing the membrane with 
separation capabilities [1], and it contains surface functional groups such as 
carboxyl and amine [2, 3].  Membranes are manufactured from a variety of 
materials, such as cellulose acetate (CA), cellulose diacetate (CDA), cellulose 
triacetate, polyamide (PA), other aromatic polyamides, polyetheramides, 
polyetheramines, and polyetherurea; also, thin-film composite (TFC) membranes 
may be made from a variety of polymers consisting of several different materials 
for the substrate, the thin film and other functional layers.   

Membranes are capable of separating species as a function of their 
physical and chemical properties when a driving force is applied, and they enable 
filtration to the removal of colloids, cells and molecules. This has stimulated 
polymer synthesis and the design of membranes for an advanced level of 
performance. The fundamental understanding and technological improvement of 
membranes are major objectives in recent membrane science. 

In membrane processes, two contributions to the adsorption of 
macrosolutes to the membrane surface are generally recognized [4].  The first is 
concentration polarization, which while undesirable, it is sometimes possible to 
control since it is reversible.  Cross-flow filtration and backwashing are two 
common ways to reduce the effects of concentration polarization [4, 5] 

The second contribution to the adsorption of macrosolutes to the 
membrane surface is a complex phenomena known as fouling, which refers to 
specific intermolecular interactions between macrosolutes present in the feed 
water and the membrane that occur even in the absence of filtration. Fouling 
cannot be removed by cross-flow operation, backflushing or backpulsing and it 
results in permanent flux decline and leads to irreversible adhesive adsorption. 
Natural organic matter (NOM) is considered a major contributor to abiotic 
membrane fouling in water separation applications [2, 7, 8, 12]. NOM fouling of 
membranes has been previously observed to strongly correlate with membrane 



hydrophobicity [3, 10], surface roughness [11, 7,] charge [12, 10, 2, 8, 13], and 
molecular weight cutoff (MWCO) [13, 7].    

Based on hydrophobicity interactions between the membrane surface and 
NOM, it would be expected that the use of hydrophilic membranes would 
decrease fouling.  However, commercially available purely hydrophilic (known as 
low-fouling or non-fouling) membranes have been recently shown to experience 
faster permeate flux declines [8] and require more frequent chemical cleanings 
than regular hydrophobic membranes [28]. While, hydrophilic membranes have a 
superior fouling resistance [22, 16, 4], they are not resistant to chemicals [14].  
Hydrophilic membranes foul in the presence of nonionic surfactants [14, 15] due 
to hydroxyl and/or carboxyl membrane functional groups adsorbing nonionic 
surfactants by hydrogen bonding or acid-base interactions [5], as well as in the 
presence of high ionic strength solutions [1] that lead to a reduction of the 
hydrophilicity of the membrane [5]. Thus, ideal membranes would combine the 
high chemical resistance of hydrophobic membranes with the excellent fouling 
resistance of hydrophilic membranes, which is best achieved through 
modifications of hydrophobic membranes to be rendered hydrophilic. Post-
synthesis modifications can be used to deem hydrophobic membranes more 
hydrophilic. A common surface modification technique is graft polymerization, in 
which a monomer is grafted on a polymeric membrane support. 

A problem associated with graft polymerization is a loss of membrane 
permeability [23; 24; 25 26] after monomer grafting because of long chain length 
produced [27].  However, grafting high density and long length polymers is 
essential to impart the surface hydrophilicity [27]. This study hypothesized that 
the use chain transfer agents can control the degree of polymerization during 
free radical polymerization. Chain transfer agents can simultaneously terminate 
growing polymer chains and generate new radicals, resulting in a higher chain 
density with a lower length [27]. 

We have focused on the development and optimization of a technique to 
graft a hydrophilic monomer onto the surface of a membrane, which will lead to 
increased hydrophilicity which is expected to decrease fouling tendency while 
enhancing the permeability and selectivity properties of the modified membrane. 
The membrane modification tested involved the addition of the following 
chemicals to the membrane 
1. oxidizing agents as viable initiators for radical development on membrane 

surfaces, and  
2. Chain transfer agents to control grafted chain density and length. 
 
Modification 

Membrane samples were soaked in distilled water (DI) solution overnight 
for initial precompaction of pores. In Method I, membranes were then transferred 
to solutions containing the oxidizing agent to abstract hydrogen from active 
groups on the membrane surface, thus leading to the formation of a radical by 



dehydrogenation. The monomer was extracted and allowed to graft to the 
membrane by placing the membrane in PEG solution. In Method II, a membrane 
sample was placed flat on a glass sample holder and solutions containing the 
oxidizing agent were added to the membrane sheet drop-wise so that the entire 
sheet was filled with the oxidizing solution. After a certain ten minutes the 
oxidizing solution was replaced by PEG solution for polymerization. 
The reaction mechanisms can be described as follows, where Y represents the 
membrane and M represents the monomer: 
 
 

 

 
 
 

Once the membrane has been successfully polymerized, the effect of 
adding a chain transfer agent to control graft chain length (CTA, represented by 
Z) and density was investigated in order to develop an optimal modification 
technique: 

 

   
 

 
Results 

In Method I, it was determined that the optimal contact times for the 
dextran 70  rejection were 10 minutes for the oxidizing agent (persulfate), 5 
minutes for the monomer (PEG), and 2.5 minutes for the CTA. Thus, the same 
contact times were used for the second modification method. Modification 
resulted in increase in the dextran 70 rejection without any change in the 
permeability as shown in figure 1 
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               fig 1: variation in the membrane permeability  due to modifications 
 
 
 
 
Conclusions: 

It was demonstrated that a chain transfer agent successfully controlled the 
monomer chain length and density on the membrane surface. Modification 
resulted in better rejection of dextran without altering the permeability of 
membrane. Both the modification methods resulted in similar variation in flux. 
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