453g Catalysis and Recycling of Metal Nanoparticles Stabilized by Microemulsions

Chien M. Wai

Metal nanoparticles (Pd, Rh, Pt) stabilized by microemulsions are highly active for catalyzing chemical reactions. Two types of microemulsions, water-in-oil and water-in-CO2, have been studied as templates for synthesizing and stabilizing metal nanoparticles and their subsequent applications for chemical catalysis. Bis(2-ethylhexyl)sulfosuccinate (AOT) and fluorinated AOT were used as surfactants for making microemulsions in organic solvents and in supercritical CO2, respectively. Examples of hydrogenation reactions and coupling reactions catalyzed by microemulsion-stabilized metal nanoparticles in organic solvents and in supercritical fluid CO2 will be presented. The advantages of using water-in-CO2 microemulsions versus water-in-oil microemulsions for stabilizing metal nanoparticles for catalytic applications will be discussed. Methods of recycling metal nanoparticles for catalysis in supercritical CO2 will also be discussed.