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This paper presents the rigorous solution for the diffusive interaction between a 
reactant source and a sink with a volume distributed internal consumption reaction.  While in 
applications sinks are often impenetrable with surface consumption reactions1,2, a number of 
important cases of penetrable sinks with internal reactions can be found.  In the analysis of 
interacting mixed microbial populations, sometimes two different cellular species exchange 
growth factors for a common form of mutualism.3  Still more widespread are commensal 
relationships, where one species produces a compound (a vitamin, growth factor or nutrient), 
which causes the growth of another species (See page 640 of reference 3 for a list of 
examples.)  

 
The two cell problem can be solved with bispherical expansion4,5 or bispherical 

coordinates6.  Here the twin spherical expansion is used and each cell has a spherical 
coordinate originating at the center where the radial component is  and angle )2(1r )2(1Ω  is 
positive in the counterclockwise direction (Figure 1).  Any point in the system can be 
expressed in either set of spherical coordinates. 

 
The spherical source can have any radius , and in reference 2a 1 it is shown that a 

steady, uniform rate σ  of reactant delivery per unit external surface area is appropriate for the 
mutualism and commensal interaction1,3,7.  The source cell must take up as substrates the 
needed precursor chemicals for the mutualism or commensal reactant compound; carry out 
intracellular processes to break down the input, manufacture the reactant and expel the 
reactant from the source cell wall.  A very common experimental substrate uptake rate for a 
cell is Monod-type kinetics.  If we assume reasonable reactant precursor substrate 
concentrations Monod kinetics suggest a zeroth order uptake kinetics, because the 
denominator constant is usually small.3  A pseudo-steady state cell implies a zeroth order 
chemical production of reactant from the source cell surface.7  The extracellular reactant 
transport outside the source and sink volumes is by Fickian diffusion with diffusivity D  and 
reactant concentration .  The spherical sink may have an arbitrary radius , and is located a 
center-to-center distance  from the spherical source cell (Figure 1).  The concentration of the 
mutualism or commensal reactant vitamin or growth factor is often low, so that the volumetric 
reaction rates within the sink can be considered to be first order with a reaction rate constant 

.  The reactant transport within the sink is modeled as Fickian with an effective internal 
diffusion coefficient 8

c 1a
d

intk

intD .  The Fundamental geometrical, kinetic and transport parameters can 
be combined into three dimensionless groups 
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intDD=ε , (3) 

and an internal sink Thiele modulus9

intint1 DkaT =φ . (4) 
The net dimensionless volume distributed sink reaction rate expression 
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depends on the values of the four dimensionless quantities (1) – (4) given above.  The integral 
in equation (5) is over the sink surface and contains all elements of solid angle ,  is the 
sink surface unit normal vector within 

1Ωd 1η

1Ωd  pointing away from the sink surface into the 
extracellular space.  In yet another application, the quantity P  is the probability that a molecule 
emitted from a zeroth order source surface diffuses to the sink and is trapped within the 
internal volume, is the well known steady-state trapping problem in the chemical physics 
literature10,11,12. 

 
In an earlier paper1 rigorous, exact expressions were derived both for the sink reaction 

rate P  and the local reactant concentration  for the same zeroth order spherical source, but 
for a first order surface reaction with rate constant  or an impenetrable sink.  While the 
dimensionless quantities 

c
1sk

γ  and  remain the same, only a single dimensionless sink surface 
reaction rate constant   

1d

1k
Daks /11

1 =−λ , (6) 
is needed to completely characterize the impenetrable sink reactivity P .  The P  and  results 
were presented in reference 

c
1 as exact solutions for the impenetrable sink applications, but 

they are also useful as an approximation for the penetrable sink cases.  In this communication, 
the conditions under which the use of an effective surface reactivity and the impenetrable 
sink results of reference 

effk1

1 will accurately describe the volume reaction P  for a penetrable sink, 
and when it will fail will be examined. 

 
The solution of the source-penetrable sink can be generated directly from the source-

impenetrable sink forms1.  From reference 1, the λ  dependence of the impenetrable sink P  
and c  can be entirely included in coefficients nΛ  of the form 

[ ]λλ )1(1/)1( ++−=Λ nnn ,            ,.....2,1,0=n  (7) 
 

Tsao13, in the context of the physically different problem of two identical sink in the 
presence of a uniform, constant reactant concentration, has shown that the impenetrable sink 
solutions will produce the corresponding penetrable sink quantities upon the substitution of nΘ  
for , nΛ
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where  is related to the modified Bessel function of half-integer order ni )(21 TnI φ+  by   
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 and in general .  The substitution (8) comes directly from comparing the sink surface 
boundary conditions for an impenetrable and penetrable sink and the same relationship can be 
shown to be valid for the source-sink problem.  As the details of the source-penetrable sink 
derivations are similar to those in reference 

nn Θ≠Λ

1, they are omitted and the final results for the 



trapping probability are listed below.  Applying the substitution (8) – (9) directly into the P  
expression, equations (20), (24), (25) and (31) of reference 1, we have  
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for the closed fraction type forms 
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with 

( ) 10 =nQ . (16) 
The solution form (11) – (16) contains only one summation (11), and each term of P  needs 
only a finite number of n  nested steps for its exact evaluation, and P  is guaranteed to 
converge for any set of parameters (1) – (4).   
 

  Now the question is posed, is there some selection of an effective surface reaction 
rate , written in terms of effk1 ε  and Tφ , that when used in λ  within the solution of reference 1, 
will give the same P  behavior as equations (11) – (16)?  One reasonable choice of  is to 
match the overall sink reaction rates of the impenetrable and penetrable isolated sinks, 
because at least at infinite separation 

effk1

∞→1d  the results would always coincide, hence we 
select 

( )( )1coth1int1 −= TTeff aDk φφ . (17) 
 

For the different problem of pure competition between two identical sinks, Tsao13 has 
stated that the impenetrable sink solutions written in terms of 0Λ  can be used with good 
accuracy to model the penetrable sink results upon the substitution of  for .  Tsao’s0Θ 0Λ 13 
procedure is the same as the use of equation (17) into λ  suggested above.  One advantage of 
this substitution is that the penetrable sink problem is reduced from a four parameter problem 
to a three parameter problem with  

Dak effeff 11
1

1 =−λ  (18) 
replacing the ε  and Tφ .  A second advantage is all the chemical physics phenomena found for 
the source impenetrable sink problem1 apply directly to the penetrable sink case. 

 



It turns out that the impenetrable sink solutions of reference 1 with an effective inverse 
surface reaction rate coefficient  of equation (17) and (18) reproduce the penetrable sink 
behavior of equations (11) – (16) rather well, except in one region of the total parameter space, 

eff1λ

5.0<Tφ  and 5.0<ε .  Typical behavior is shown in Figure 2 where the trapping probability is 
plotted versus the dimensionless separation distance )/( 21 aad +  for equisized spheres 1=γ , 
a Thiele modulus of 01.0=Tφ  and a diffusivity ratio 1.0=ε .  The solid line represents P  values 
from equations (11) – (16) and the dotted line, which lies above it, is the source impenetrable 
sink solution from reference 1 using  from equations (17) and (18).  As expected the two 
solutions approach each other as the dimensionless distance  increases, but as true contact 
is approached the impenetrable approximation is in error by as much as -7.4%. Table 1, lists 
the error at contact for same sized spheres (γ=1) for values of the Thiele modulus 

eff1λ

1d

5.0<Tφ  and 
for diffusivity ratios 5.0<ε .  The observed discrepancies can be particularly significant, 
because as Weisz15 points out nature evolves its microorganisms to use its internal space 
efficiently, cellular values of Tφ  at or below  are not uncommon.  It is likely that the same 
limitations should also be placed on Tsao’s results

5.0
13, i.e. in the parameter region of Table 1 the 

full penetrable sink solutions should be used. 
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FIG. 1: Two spheres of radius a1 and a2, spherical coordinates ( 11, Ωr  and ) separated by 
center-to-center distance d.  Sphere 1 is the sink and sphere 2 is the source cell.  
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Figure 2: Reaction probability P  versus the dimensionless center to center distance 

 between the source and sink, for a sink to source radius ratio 1
21 )( −+ aad )/( 21 aa=γ  of 1.0, 

extracellular to internal sink diffusivity ratio )/( intDD=ε  of 0.1 and sink Thiele Modulus 

)/( intint1 DkaT =φ  of 0.01.  The lower solid line is the exact reaction probability from equation 
(11), for an internally reactive sink, and the dashed line refers to the approximate, sink surface 
reaction probability, from reference 1 with an effective inverse dimensionless reaction rate 
coefficient ) of 3000. )1coth/((1

1 −=−
TTeff φφελ



 

PERCENT ERROR FOR THE EXACT AND APPROXIMATE SOLUTION  

Table 1 
 

Tφ  5.0=ε  1.0=ε  05.0=ε  01.0=ε  
0.5 -4.48 -3.98 -2.94 -0.92 
0.3 -5.06 -5.69 -4.92 -2.16 
0.1 -5.39 -7.19 -7.35 -6.22 
0.05 -5.43 -7.38 -7.71 -7.59 
0.01 -5.43 -7.44 -7.83 -8.16 
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